

g-software Absolute Gravity Data Acquisition And Processing Software version 9 User's Manual

Version 1.0, 29 May 2013

© Copyright 2013 Micro-g LaCoste All Rights Reserved Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

Publication Number 115-010-002B Version 1.0, 29 May 2013

Applicable Products Micro-g LaCoste FGL, FG5 Absolute Gravimeter

Disclaimer

The information contained in this document is subject to change without notice. Micro-g LaCoste makes no warranty of any kind. Micro-g LaCoste shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Contact Micro-g LaCoste 1401 Horizon Avenue Lafayette, Colorado 80026 USA

Tel: (303) 828-3499 Fax: (303) 828-3288 E-Mail: <u>info@microglacoste.com</u> Website: <u>www.microglacoste.com</u>

Table of Contents

Section Page	
1.	Introduction1-1
	System Requirements1-1
	How g-software Software Processes Gravity Data1-2
	Environmental Considerations1-3
	Instrumental Considerations1-3
	Document Conventions1-4
2.	Installation2-1
3.	Real-time Data Acquisition 3-1
	Data Acquisition Process Steps
	Start Data Acquisition Project3-1
	g-Software Setup
	Information Tab3-2
	System Tab3-6
	Acquisition Tab3-11
	Control Tab3-14
	Comments Tab3-25
4.	Beginning Acquisition or Reprocessing 4-1
	Start Processing4-1
	State Dialog4-2
	Drop Gravity Dialog4-5
	Set Gravity Dialog4-5
	Residuals Dialog4-6
5.	Additional Dialogs 5-1
	Specific Post Processing Features5-3
	Project Navigation Panel5-3

	Reviewing Processing Parameters5-	-4
	Output File Status 5-	-5
	Processing Status5-	-6
	Processing Finished 5-1	0
	Reviewing Processing Results	1
	Project Summary File	1
	Set Summary file	3
6.	Tide Correction Models6	-1
	Berger	-1
	ETGTAB Setup	-2
	Potential Filename Section6-	-3
	Ocean Load Files Section6-	-3
	Advanced Users	-7
	Load Terms Dialog6-	-7
	Oceanloading Format	-8
	g Binary Data Files Structure	-9
	Project Files (fg5)6-	-9
	Gravity Set Files (.gsf)6-	-9
7.	Menu Options	-1
	Project Menu	-1
	New	
	Open	
	Close	
	Save	
	Save As New Project	
	Save As New Template	
	Import	-3
	Export7-	-3
	Recent File7-	-4
	Exit	-4
	Edit Menu7-	-5
	Reset7-	-5

	Set Files7-5
	Time Offset7-5
	Program GPS7-6
	View Menu7-6
	Process Menu7-7
	Setup7-8
	Rate7-9
	Set Break Point7-10
	Go7-10
	Step7-10
	Break7-10
	Stop7-10
	Quick Update7-10
	View Channels7-11
	Tele-g Control Panel7-11
	Options Menu
	E-mail
	Graphics7-14
	Protection7-15
	Output Menu7-16
	Window Menu7-18
	Help Menu
8.	Additional Utilities 8-1
	Convert Utility
	Input File
	Sensor File8-1
	Output Project8-2
	ProjectMerge Utility8-3
	Output Directory8-3
	Final Project Name8-4
	Merge Files
	Add File8-4
	Remove File

	Merge	4
	gProjectCopy Utility	5
	Input File	5
	New Project8-5	5
	Сору8-5	5
9.	License, Support And Maintenance9-7	1
9.	License, Support And Maintenance	
9.		1

List of Figures

Figure 3-1 Example New Project Warning Message	3-1
Figure 3-2 g-software Main Window: Four Default Screens	3-2
Figure 3-3 Setup Dialog: Information Tab Displayed	3-3
Figure 3-4 Convert Dialog	3-5
Figure 3-5 Access Point File Dialog	3-5
Figure 3-6 Setup Dialog: System Tab	3-6
Figure 3-7 System Tab: Advanced Dialog	3-10
Figure 3-8 Setup Dialog: Acquisition Tab Page	3-11
Figure 3-9 Example Of Red/Blue Sequencing Acquisition Mode	3-13
Figure 3-10 Setup Dialog: Control Tab Page	3-14
Figure 3-11 Control Tab: Corrections Setup Dialog	3-15
Figure 3-12 Frequency Response Setup Dialog	3-20
Figure 3-13 Setup: Control Tab Uncertainties Dialog	3-21
Figure 3-14 Drop Residual Spectrum Graph	3-25
Figure 3-15 Setup: Comment Tab	3-26
Figure 4-1 g-software Main Window Showing Open Project File	4-2
Figure 4-2 State Dialog Example Tool Tip: Actual Height (cm)	4-3
Figure 4-3 A10 Example Data: Current Set Value Update (A10 example data)	4-6
Figure 4-4 Drop Residuals: System Response Disabled	4-7
Figure 4-5 Drop Residuals: System Response Enabled	4-8
Figure 5-1 Example Project Navigation Panel: Control Dialog	5-3
Figure 5-2 Processing Status After Completion of Set #2	5-7
Figure 5-3 Example State Dialog	5-8
Figure 5-4 Example Project Summary File	5-12
Figure 5-5 Example Set by Set Summary File	5-13
Figure 6-1 Setup Control Tab and Berger(1969) et. Al Setup Dialog	6-2
Figure 6-2 ETGTAB Setup Dialog Box	6-3
Figure 6-3 Example Oceanload.dff Delta Factor File Format	6-4
Figure 6-4 Example Oceanload Factor File Format	6-5
Figure 6-5 OceanLoad Dialog	6-6

Figure 6-6 Load Terms Dialog
Figure 7-1 Initial g-software Main Window With Four Menu Options
Figure 7-2 Project Menu Drop Down Selection List
Figure 7-3 Example Project Menu Displaying Recent File List
Figure 7-4 Edit Menu Drop Down Selection List7-5
Figure 7-5 Project Time Offset Dialog7-6
Figure 7-6 View Menu List7-7
Figure 7-7 Process Menu Selection List
Figure 7-8 Setup Dialog7-9
Figure 7-9 Processing Rate Dialog7-9
Figure 7-10 Set Processing Break Point
Figure 7-11 View Channel Live Update Dialog7-11
Figure 7-12 Tele-g Control Panel
Figure 7-13 Options Menu List
Figure 7-14 E-mail Setup Notification Dialog
Figure 7-15 Graphics Setup Dialog7-15
Figure 7-16 Output Menu List
Figure 7-17 Text Output Selection Setup Dialog
Figure 7-18 Graphic Output Selection Dialog
Figure 8-1 Convert Utility Dialog
Figure 8-2 Sensor Setup Dialog8-2
Figure 8-3 ProjectMerge Utility Dialog
Figure 8-4 gProjectCopy Dialog8-5

List of Tables

Table 3-1 Setup: Information Tab Options Description	-4
Table 3-2 Setup Dialog: System Tab Options Description 3	-7
Table 3-3 A2D Cards: Acquisition Parameters For Each Channel	-9
Table 3-4 Advanced Dialog Options Description 3-7	10
Table 3-5 Setup Dialog: Acquisition Tab Options Description	12
Table 3-6 Corrections Section: Setup Dialog Options Description	15
Table 3-7 Setup Control Tab: Laser Section	18
Table 3-8 Recommended Values For Modeling Uncertainties 3-2	22
Table 3-9 Nominal Earth Tide And Ocean Load Uncertainties 3-2	22
Table 3-10 Recommended Values For Modeling Uncertainties 3-2	23
Table 5-1 g-software Dialogs And Description 5	-1
Table 5-2 Project Navigation Panel: Control Dialog Menu Options 5	-4

1. INTRODUCTION

System Requirements	. 1-1
How g-software Software Processes Gravity Data	. 1-2
Environmental Considerations	. 1-3
Instrumental Considerations	. 1-3
Document Conventions	. 1-4

This manual details the operation of the Micro-g LaCoste g-software Absolute Gravity Data Acquisition and Processing Software package. Information covered in this manual includes:

- Real time set up instructions of the g-software.
- Details site and instrument specific parameters.
- Provides information about the control of the environmental and instrumentation corrections.
- Post-processing considerations.
- Detailed description of the tidal routines and advanced software functions.

The g-software package provides sophisticated data collection and processing and analysis capabilities, including standard environmental gravity corrections necessary for μ Gal gravity measurements. It allows the user to customize the data acquisition program for each site including geodetic coordinates, delayed start-up, set and drop rate and other detailed site information. Additionally the software provides real time plot capabilities and statistical analyses giving users a clear understanding of the gravity data.

The g-software Absolute Gravity Data Acquisition and Processing Software (g-software) operates in the Windows® environment and is designed to work with all Micro-g LaCoste (MGL) absolute gravimeters, including the FG5(X), A-10, FGL gravimeters, and is capable of processing older, archived data collected with most Olivia versions after being converted to the g format using the included "Convert" application.

Users familiar with previous version of the g-software (g8), Olivia, or absolute gravity data acquisition will find the software easy to use and operate. Those new to absolute gravity measurements should read this user's manual carefully before operating any MGL absolute gravimeter or post-processing any absolute gravity data.

System Requirements

The g-software relies on both text and graphical output to assist users in quickly evaluating instrument performance and results. The software runs best with the following minimal standards:

Operating System:	Windows 98, 2000, NT, XP, Vista, Windows 7
Free Hard Drive Space:	1 GB or greater
RAM:	512 MB or greater
Processor:	Intel™ P3 or greater
Processing Speed:	1 GHz or greater

How g-software Software Processes Gravity Data

This manual assumes the user is familiar with the operation of a Micro-g LaCoste freefall gravimeter. An object is dropped in a vacuum and a laser interferometer is used to accurately track the freefall. The precise timing of optical fringes (which provide distance information) allows the acceleration of gravity, g, to be determined.

The g-software communicates with the Time Interval Analyzer (TIA) card in the computer to record the precise time of the zero crossing of the optical fringes. Plotting the distance as a function of time results in the expected parabolic curve. The precise formula is:

$$x_{i} = x_{0} + v_{0}\tilde{t}_{i} + \frac{g_{0}\tilde{t}_{i}^{2}}{2} + \frac{\gamma x_{0}\tilde{t}_{i}^{2}}{2} + \frac{1}{6}\gamma v_{0}\tilde{t}_{i}^{3} + \frac{1}{24}\gamma g_{0}\tilde{t}_{i}^{4}$$
$$\tilde{t} = t_{i} - \frac{(x_{i} - x_{0})}{c}$$

The complications arise due to the fact that the gravity gradient cannot be neglected and that the path length of one of the interferometer arms is decreasing. This latter effect is sometimes referred to as the "speed of light" correction. The g-software uses least-squares fit to calculate the best fit of the (x_1, t_1) data to the above equation. The free parameter of interest is g, the acceleration.

This determines the best estimate of the absolute value of g at the beginning of the drop.

However, to be a truly useful value, a series of corrections are usually performed. There are both environmental and instrument considerations that need to be accounted for.

Environmental Considerations

Transfer Height Correction.

This transfers the gravity value from the height of the top of the drop (which can change from setup to setup and from instrument to instrument) to a more convenient value.

Barometric Pressure Correction.

As the local air pressure changes, so will the measured gravity value due to direct attraction. By comparing the current pressure with the standard local value, the gravity value can be corrected to better estimate the value on a "normal" day.

Earth Tide and Ocean Load Corrections.

As the earth changes shape due to solar and lunar attraction, and as the mass of the oceans deform the earth's crust, the local value of g changes by hundreds of μ Gals. Through empirically derived formulas, these effects can be minimized to estimate the expected average value of g for any given time at the current location.

Polar Motion Correction.

As the earth wobbles on its axis, the local centripetal acceleration changes the local value of g. By entering parameters related to the earth's current orientation, this effect can be corrected.

Instrumental Considerations

Reference X₀ Correction.

The mechanics of the dropping system are such that it cannot return exactly to the same height each time. However, X_0 is one of the free parameters in the equation of motion. Using this value to normalize all of the drops to the same height is technically necessary. Note however, that this correction is insignificant and is usually on the order of 0.01µGal.

Laser Wavelength

The wavelength of the laser may change over the course of time, or may "hop" to a new value mid-measurement. The software needs to be able to account for this.

Document Conventions

Referenced dialogs, menus, commands, dialog titles, labels and options are bolded text in the user instructions. WARNING and IMPORTANT notes are highlighted in red.

2. INSTALLATION

	You have either received a Compact Disc media or you have downloaded the g-software Setup file from the Micro-g LaCoste website:
	http://www.microglacoste.com.
	 Completely uninstall all previous versions of the g-software Absolute Gravity Data Acquisition And Processing Software. Double click Setup.exe. Follow the instructions. It is highly recommended that you accept all the default installation paths.
NOTE	During installation: "f" means file and "d" means directory in the instructions.
	 When starting g-software for the first time, it will prompt you to create a small binary file, "SysChk.bin" that is unique to your computer. Email SysChk.bin file to Aaron Schiel at aaron@microglacoste.com or Derek van Westrum at derek@microglacoste.com. Wait to receive the PWinfo.bin file. During normal the business week, this usually takes less than twelve hours.
NOTE	The files are unique for each computer, so please send one file at a time.
	 Upon receipt of GPWInfo.bin: Run g-software again. Follow the program's instructions to install the password file. You are now ready to run the g-software.
IMPORTANT	Due to software protection in g-software, a new password file (GPWInfo.bin) is required if any hardware changes (new or removed) are made to the g-software computer. Follow the above steps to obtain a new GPWInfo.bin file.

3. REAL-TIME DATA ACQUISITION

Data Acquisition Process Steps	
Start Data Acquisition Project	
g-Software Setup	
Information Tab	
System Tab	
Acquisition Tab	3-11
Control Tab	3-14
Comments Tab	3-25

The g-software allows both real-time data acquisition and postmission processing.

Data Acquisition Process Steps

Start Data Acquisition Project

- From the main g-software window, click **New** on the **Project** menu.
- The software pop-up **Micro-g** dialog indicates that starting from a completely new project is generally not desired. (See Figure 3-1) It is better to start with an existing project with gravity meter settings obtained from another project or template. See <u>Section 07 "Save As A New Template"</u> for additional information.
- Click "Yes" to continue.

Micro-g	X
Â	Warning: A new project does not have meter specific settings. It is better to open an existing project and save that project as a new project. Do you want to continue?
	Yes <u>N</u> o

Figure 3-1 Example New Project Warning Message

- The four default screens are displayed. Refer to Figure 3-2.
 - There is no information in the left **Project** navigation panel.
 - By default, g-software is set to run an FG5 instrument at the Micro-g LaCoste facility.

State - tong			Terera.
Passing Image: Second state Image: Second state <th< th=""><th>10 1 10 1 10 10 10 10 10 10 10 10 10 10</th><th></th><th> (3)(R) (R)3</th></th<>	10 1 10 1 10 10 10 10 10 10 10 10 10 10		 (3)(R) (R)3
Day Day Transfer	- I	Sets No Data	
Temp (10) Sex (2) Zex (3) Zex (3) Zex (3) Spring (20) Laws (3) Sex (27) Laws			
he			
Tele I and Refer Construction C			
Pacifica pGal			
α -20			

Figure 3-2 g-software Main Window: Four Default Screens

g-Software Setup

To set the g-software up for data acquisition and processing at your location, you must modify some or all of the parameters for each of the tab pages in the **Setup** dialog. See modification details for each of the tab pages below.

- To access the **Setup** dialog go to the **Process** menu option and click **Setup**.
- The **Setup** dialog has five tab pages: Information, System, Acquisition, Control and Comments. Refer to Figure 3-3.

Information Tab

The **Information** tab displays setup options for the instrument location. Figure 3-3 displays an example setup dialog for the **Information** tab. Refer to Table 3-1 for descriptions of each of the setup options.

Setup	
Information System Acquisition Control (Site Name: MGL Code: 1 Latitude (dd, +N): 39.97893 Longitude (dd, +E): -105.06817 <u>Convert</u> Elevation (m): 1577 Nominal Pressure (mBar): 837.6 Set Gradient (µGal/cm): -3	Setup/Lookup Setup Height (cm): 0.2 Polar X (arc sec): 0 Polar Y (arc sec): 0 Transfer Height (cm): 100 Set to Actual Height Sync w/ Ki NOS Access Point File
	OK Cancel Apply

Figure 3-3 Setup Dialog: Information Tab Displayed

Table 5-1 Setup. Information Tab Options Description			
	Site Section		
Name	(Site Name) Free form text.		
Code	(Site Code) Free form text.		
Latitude (dd, +N)	In decimal degrees (dd)		
Longitude (dd, +E)	In decimal degrees (dd)		
Convert Button	Converts Degree/Minutes/Second (DMS) coordinates or Universal Transverse Mercator (UTM) coordinates to decimal degrees (DD). An example Convert Dialog is shown in Figure 3-4.		
Elevation (m)	Meters above sea level.		
Nominal Pressure (mBar)	The long term, mean pressure value at the site, which is generally not the current pressure value.		
Gradient (µGal/cm)	Vertical Gravity Gradient. Normally negative. If unknown, the standard free air value is -3.09 µGal/cm.		
	Setup/Lookup Section		
Setup Height (cm)	Measured Setup Height. This changes from setup to setup.		
Polar X (arc sec)	Polar motion X and Y components. These need to be updated		
Polar Y (arc sec)	approximately once per week. Current values are always available at http://microglacoste.com		
Transfer Height (cm)	The height that the gravity value is reported at. Typical values are 0, 100, 130° cm. The gradient value is used to transfer the gravity value calculated at the top of the drop (different for each instrument) to the requested transfer height.		
	NOTE In previous versions of the g-software, the "Setup Height" was referred to as the "Reference Height" and the "Transfer Height" was referred to as the "Datum Height". The name changes were done for the purposes of clarity.		
Sync w/KRONOS	Used to synchronize the computer time, latitude and longitude with the KRONOS box. The KRONOS box has to be locked to a valid GPS signal for proper synchronization.		
Access Point File	Used to access or manipulate point files. Point files contain site/day specific information. If this information is known ahead of time, the user can create point files with this information. Point files can be used to speed up software setup time. The point files contain Site Name, Site code, Latitude, Longitude, Transfer Height, Elevation, Pressure, Gradient, Polar X and Polar Y. An example Point Load dialog is shown in Figure 3-5.		

Table 3-1 Setup: Information Tab Options Description

Convert	×
Conversion Type: DMS To DD Degs Mins Secs Latitude (+N): 39 ° 58 ' 44.1 " Longitude (+E): -105 ° 4 ' 5.4 "	Ellipsoid / Datum: WGS 84
Dec. Degs DD Latitude: 40.02885 DD Longitude: -105.04603	OK Cancel Apply

Figure 3-4 Convert Dialog

MGS Point Load		×
Append To Point File	C/V	
Start New Point File	C:V	
Load From Point File	C:V	
Select Name ->	_	
Current Selection		
Name:	Micro-g Solutions Inc.	
Code:	MGSNU	
Latitude (DD):	40.02885	
Longitude (DD):	-105.04603	
Transfer (cm):	100	
Elevation (m):	1528	
Pressure (mb):	842.65	
Gradient (uGal/cm):	-3.02	
Polar X:	-0.1829	
Polar Y:	0.3169	
[ОК	Cancel	

Figure 3-5 Access Point File Dialog

System Tab

An example of the System Tab dialog is shown in Figure 3-6 and options description are listed in Table 3-2.

Setup	X
Information System Acquisition Control	Comments
Instrument Type Model: A10 S/N: 206 Laser Type: L Series Setup	Computer Cards Fringe Card: Guide Setup A2D Card: IOTech Daq Setup
GPS (KRONOS)	Barometer
Advan	ced
	OK Cancel Apply

Figure 3-6 Setup Dialog: System Tab

	Instrument Type Section
Model	Select FG5, A10 or FGL. Certain options are enabled or disabled according to the instrument selection.
S/N	Enter the serial number for note keeping purposes.
	Laser Section
Туре	Select the laser type and parameters associated with the laser. WEO 100
	Laser Voltage
	Enter the 1F voltages for each peak, DEFG (it is not necessary to enter values for H, I or J if the measurement begins with peak D, E, F, or G selected). The software uses this voltage to determine the laser peak in use. Refer to the Instrument operator's manual for more information.
	Wavelengths
	In general, it is never necessary to change the laser wavelength. Users are highly discouraged from editing the laser wavelengths, unless for testing purposes. These should be considered fixed.
	Serial Number.
	Enter the serial number for note keeping purposes.
	Modulation Frequency
	The Modulation Frequency is unique to each WEO 100 laser. This must be entered accurately to x,xxx.xxx decimal places.
	WEO 200
	Wavelength
	Serial Number.
	Users are highly discouraged from editing the laser wavelengths, unless for testing purposes. These should be considered fixed.
	ML-1
	Blue Lock
	Red Lock
	Wavelength
	Refer to the information provided with your instrument for the wavelength values. The Blue and Red Lock, Wavelength and Warm-up Mode are unique to each ML-1 laser, and must be entered accurately to xxx,xxx,xxx decimal places. Do not change these values unless told to do so. This directly affects the calculated gravity value.
	 Warm-up Mode. Warm-up mode is typically be about 60 seconds. This refers to the amount of time before data acquisition that the laser enters lock mode.

Table 3-2 Setup Dialog: System Tab Options Description

	Serial Number		
	Enter the serial number for note keeping purposes.		
	Seismometer Section (Prototype FGL Only)		
Setup button	 Check the Seismometer check box then click on Setup. Seismometer Type Users may select from a variety of seismometer options supported by Micro-g LaCoste. Sampling Frequency Users may enter the sampling frequency. Recommend sampling frequency is 10xCutoff. Sampling Time Users may enter the amount of time to sample. Recommended sampling time is 200ms for small dropping chambers. 		
	GPS (KRONOS) Section		
Setup button	Check the GPS (KRONOS) check box then click on Setup . This allows the user to set the serial communication parameters with the Kronos unit, as well as test the connection. The defaults should not need to be modified.		
	Computer Cards Section		
Fringe Card	Currently Micro-g LaCoste only supports the GuideTech ISA or PCI GT650 series time interval analyzer in real time acquisition. The Setup button allows the user to: • Change the default location of the GuideTech configuration file. • Configure the base address of the card. • Change the Input Multiplexor and Scale Factor • Change number of fringes to acquire. Recommended parameters for an FG5, A10 or FGL are: • FPG File = c:\Program Files\Guide\GT650\FPGA\gt65x2.fpg • Address = 0 • Input Multiplexor = 4 • Pre Scale = 250 (FG5), 100 (A10/FGL) • No. Fringes Acquired = 700		
A2D Cards	Currently the g-software software supports the IOTech 200 (ISA) or 2000 (PCI) series A2D boards and the National Instruments PCI-6013 A2D board and Serial communication. The SETUP button allows the user to set the acquisition parameters for each channel. For the standard Micro-g LaCoste configuration, these parameters should be for Channel(s) as shown in Table 3-3.		

	Barometer Section		
Analog	This configuration is handled as Channel 4 in the A2D Setup. This is standard for all analog barometers		
Serial	Older FG5s employed barometers that communicated serially with the system controller. This dialog box controls the serial communication settings.		
Test Connection Button	This tests the communication with the serial barometer.		
Advanced	Clicking the Advanced button at the bottom of the System tab page in the Setup dialog displays the Advanced dialog and should only be used by knowledgeable users. Refer to Figure 3-7 to see an example of the Advanced dialog. The dialog options are describe in Table 3-4.		

Channel	Acquisition Parameter	Channel Setting
0	Temperature	UniPolar, 1.25V, 0, 100
1	Super Spring	BiPolar, 1.25V, 0, 1
2	Ion Pump	BiPolar, 5V, 0, 1
3	Laser Voltage	BiPolar, 5V, 0, 1
4	Barometer	UniPolar, 10V, 0, 1
		Serial Barometer, 0, 68.947
		Analog, 537.5, 125
5	User Sensor	BiPolar, 5V, 0, 1
6	User Sensor	BiPolar, 5V, 0, 1
7	User Sensor, Laser Lock or Seismometer	BiPolar, 0.3125V, 0, 1

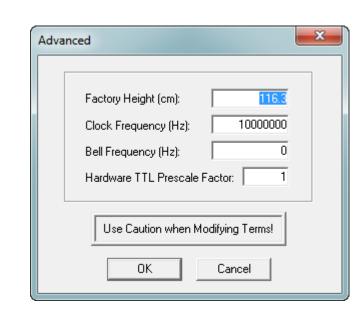


Figure 3-7 System Tab: Advanced Dialog

Factory Height	 Instrument specific and set only by Micro-g LaCoste. 	
(cm)	This is the sum of all the internal hardware heights and is measured	
	at the factory.	
	 Refer to your instrument materials for a precise value. 	
Clock Frequency	Nominally 10 MHz.	
(Hz)	 Calibrated by Micro-g LaCoste or a standards laboratory. 	
	 The precise value is unique to your instrument 	
Bell Frequency	Determined by Micro-g LaCoste	
(Hz)	 Typically this value is 0 for FG5 and FGL, and A10. 	
	 Refer to your instrument materials for the correct value. 	
Hardware TTL	Determined by Micro-g LaCoste.	
Prescale Factor	 Typically this value is 1 for FG5 and FGL, and 4 for A10. 	
	Refer to your instrument materials for the correct value.	

Table 3-4 Advanced Dialog Options Description

Microg

Acquisition Tab

The Acquisition dialog setup page is shown in Figure 3-8 and the setups options are described in Table 3-5.

Setup	×
Information System Acquisition Contr	ol Comments
Sampling Sets: 12 Drops/Set: 100 Rates Set Interval (min): 60	Time Start Immediately Start at Specified Time Thu Jan 24, 2002 16:29:30 Red/Blue Sequencing Enable Sequence Interval (min): 30
Drop Interval (s): 10 Pulse Delay (s): 7	Red/Blue Interval (min): 5
	OK Cancel Apply

Figure 3-8 Setup Dialog: Acquisition Tab Page

Sampling Section	
Sets	Enter the number of sets to acquire during the project.
Drops/Set	Enter the number of drops in each set during acquisition.
	Time Section
Start Immediately	When Start Immediately is selected, clicking Go under the Process menu (or pressing the shortcut key, F5) immediately starts data acquisition.
Start at Specified Time	 When Start at Specified Time is selected, the software begins data acquisition on the day and time specified. NOTE Time on the PC Clock must be set to Coordinated Universal Time (GMT) with daylight savings disabled, not local time.
	Rates Section
Set Interval (min)	The Set Interval is used to select the interval in minutes to start new sets. The drop down menu contains some commonly used intervals.
Drop Interval(s)	The Drop Interval sets the drop rate interval in seconds. Recommended rates are system-dependent, consult the system manual.
Pulse Delay(s)	The Pulse Delay is the amount of time in seconds between the drop and the time the object is lifted in preparation for the next drop. Systems with digital controllers need much less time to lift than do systems with analog controllers. An approximate value is set automatically by the g-software.
	Red/Blue Sequencing Section
Enable check box	 Checking the Enable box enables the red/blue sequencing. It allows users with L Series lasers to acquire data with both laser frequencies in a short time interval and still spread the entire project over a longer time interval. Example: Data can be acquired with the red mode and then a few minutes later with the blue mode. Then, after an hour, the whole red/blue sequence can begin again. Figure 3-9 shows
Red/Blue Interval (min)	and example of the Red/Blue Sequencing Acquisition Mode.Select the time interval between the start of a red set and the start of the next blue set. Typical interval is a few minutes.
Sequence Interval (min)	Select the time interval between the start of two red sets.

Table 3-5 Setup Dialog: Acquisition Tab Options Description

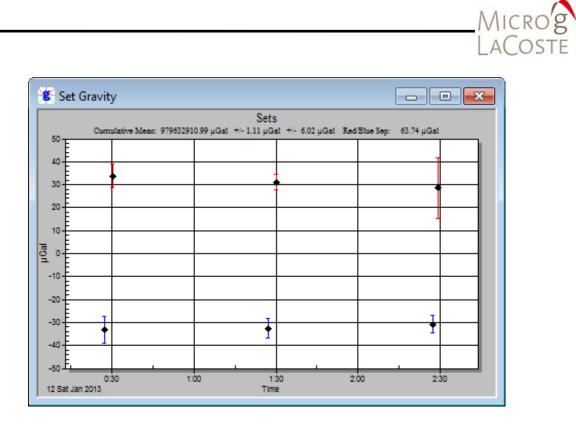


Figure 3-9 Example Of Red/Blue Sequencing Acquisition Mode.

Control Tab

The Control dialog setup page is shown in Figure 3-10. The nine subsections (Corrections, Tidal Correction, Laser, System Response Compensation, Uncertainty, Drop Fit, Fit Sensitivity, Spectrum, Bottom, Seismometer) are described below.

Setup 🗾	<u> </u>
Information System Acquisition Control Comments	_
Corrections Laser Setup Lock Detection Tidal Correction Auto Peak Detection ETGTAB Setup WEO 100 E VEO Wavelength Modulation	
System Response Compensation Uncertainty Apply Setup Drop Fit Reject Sigma: Start Time (ms): 35.03 Start Fringe: 19 Total Fringes: 601	
Update Fringe Windows Stop (ms): 44.74 Spectrum Bottom Enable Start Freq (Hz): 20 Interval (Hz): 5 Stop Freq(Hz): 2000	
Seismometer Compensated Setup	

Figure 3-10 Setup Dialog: Control Tab Page

Corrections Section

Click the **Setup** button in the **Corrections** section to display the **Corrections Setup** dialog. The **Correction Setup** dialog is shown in Figure 3-11 and the options are described in Table 3-5. The options selected are applied when selected.

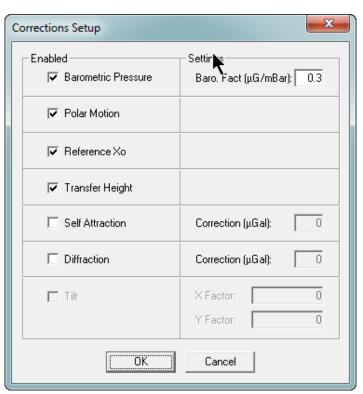


Figure 3-11 Control Tab: Corrections Setup Dialog

Table 3-6 Corrections Section: Setup Dialog Options Description

Corrections Setup Dialog		
Barometric Pressure	Enabling Barometric Pressure applies barometric pressure correction. The observed gravity is normalized to a nominal pressure at each site by applying a correction based on the observed atmospheric pressure during the observations. The Barometric Pressure correction is applied at each drop. The formula used to compute the pressure correction is: $C(p) = A^* (P(o) - P(n))$	
	Where: A = The barometric admittance factor (µGal/mBar. This value is usually between 0.30 and 0.42. The recommended value (per IAG, 1983) is 0.30. C(p) = Barometric Pressure Correction in µGal.	
	P(o) = Observed barometric pressure. P(n) = Nominal barometric pressure in accordance with DIN Standard #5450.	
Polar Motion	Enabling Polar Motion correction applies polar motion correction. This correction compensates for changes in centrifugal acceleration due to variation of the distance of the earth's rotation axis from the gravity station. This correction	

Microg LaCoste

Oomeetiene Cetur Dielen		
	Corrections Setup Dialog is normally re-computed using pole positions that are determined nearest to the observation time for each station. The formula specified in the IAGBN: Absolute Observations Data Processing Standards (1992) is used. The formula reads: $\delta g = -1.164 x 10^8 \omega^2 a 2 \sin \varphi \cos \varphi (x \cos \lambda - y \sin \lambda)$	
	 Where: δg = polar motion correction in μGals, ω = earth's angular rotational velocity (rad/s), a = semi-major axis of the reference ellipsoid (m), 	
	 φ = geodetic latitude (rad), λ = geodetic longitude (rad), X, y = polar coordinates in the IERS system (rad). 	
	Mean pole positions are determined at daily intervals and issued daily by the IERS Bulletin. The Bulletin A containing the polar motion coordinates in final and predicted format is available at no cost on the web. <u>http://www.usno.navy.mil/USNO/earth-orientation/eo- products/weekly/bulla/bulletin-a/?searchterm=Bulletin%20A</u> The Micro-g LaCoste website also posts the current polar motion values and information.	
Reference X ₀	http://www.microglacoste.com,Enabling Reference X0 applies reference X0 correction. In the equation of motion2 as used in g, gravity is determined at t_0 not at x_0 . In order to calculate the gravity at the reference position, the distance to the start position, X_0 , is multiplied by the site gravity gradient and used to correct the final calculated gravity value. The Reference X0 correction is generally very small (<0.05µGal).	
Transfer Height	Enabling Transfer Height correction applies datum transfer correction. The gravity value is actually determined at the top of the drop. This height can vary from instrument to instrument, and is, in general, a not-so-useful location. However, the observed gravity for each drop is typically transferred to a user specified height (labeled "transfer") entered on the Information tab section of the Setup dialog. Typical gravity transfer heights are 0 cm, 100 cm, or 130 cm (often used for FG5s) above the ground. The transfer is calculated by adjusting the gravity value using the difference between the measured s height plus factory height and the transfer height, and multiplying the difference by the site gravity gradient.	

Microg LaCoste

	Corrections Setup Dialog		
Transfer Height (continued)	NOTE In earlier version of the g-software (g8 Absolute Gravity Data Acquisition and Processing Software), this was known as the "Datum Height".		
Self Attraction	Enabling Self Attraction applies self attraction correction. This correction represents the perturbations of the gravitational field due to the mass distribution of the gravimeter itself. Typically this is a negative number.		
Diffraction	Enabling Diffraction applies diffraction correction. This correction arises from the inherent curvature of the wavefronts in the laser beam. This error depends strongly on the diameter of the laser beam. This results in a systematic reduction in the measured gravity value. Therefore, the correction is a positive number.		
Tilt	Enabling Tilt applies tilt correction. Because changes in verticality affect the gravity measurement, an internal tilt correction is applied. This correction is measured by using the tilt of the instrument on x and y axes.		

Tidal Correction Section

Refer to the <u>Section 6 "Tidal Correction Models"</u> for a detailed discussion of the earth tide and ocean loading corrections.

NOTE	In general, it is necessary to run the Ocean Load program once
	for each new location occupied by the gravity meter.

Laser Section

The options displayed in the **Laser** section are dependent upon the instrument model and laser type selected in the **System** tab.

The Laser section options are described in Table 3-6.

Laser Section Options			
WEO 100 Laser	WEO 100 Laser Lock Detection		
	By checking the Lock Detection check box and connecting the Laser Lock signal from the back of the WEO 100 controller (or the WEO 200) to CH 7 of the SIM (or older Patch Panel units), the g-software ignores drops that occur while the laser is unlocked. The g-software immediately ties another drop until the laser is locked. The g-software processes drops it until it "catches up" with the desired drop interval.		
	Auto Peak Detection		
	Checking the Auto Peak Detection check box determines the locked peak by checking the input voltage on the Patch Panel Laser input channel. The g-software uses the measured voltage on Channel 3 to determine which peak (DEFG or HIJ) was valid during the drop. If for some reason the voltage in Channel 3 is invalid, the user can still deselect Auto Peak Detection and manually enter the wavelength from the pull- down menu.		
	WEO Wavelength Modulation		
	Modulation Frequency includes the modulation frequency entered in the System Laser Setup page. The WEO Wavelength Modulation should always be selected when using a WEO 100 laser.		
WEO 200 Laser	Lock Detection		
	By selecting Lock Detection and connecting the Laser Lock signal from the back of the WEO 100 controller (or the WEO 200) to CH 7 of the SIM (or older Patch Panel units), g-software ignores drops that occur while the laser is unlocked. The g-software tries another drop immediately until the laser is locked. The g-software processes drops until it "catches up" with the desired drop interval.		
ML1 Laser	When Instrument Type Model is A10 and Laser Type Laser type L Series are selected in the System tab page, the Laser section options available are Alternate Red/Blue and Peak .		
	For ML-1 or AL-1 lasers, the user can select the Red or Blue Wavelength, or select Alternate Mode.		
	Red wavelength-locked sets are displayed in Red on the Sets view.		
	L Blue Blue-wavelength locked sets aredisplayed in Blue on the Sets view		

Table 3-7 Setup Control Tab: Laser Section

Alternate Red/Blue
In Alternate Red/Blue mode, the software sends an impulse signal through the digital output of the patch panel and switches between the two modes between each set.
NOTE In normal situations it is highly recommended to use Alternate Red/Blue mode. The g-software automatically takes an average of the red sets, an average of the blue sets, and then the resultant average of these values. It is the average of the blue and red wavelengths that is stable over long time periods (many months).

System Response Compensation Section

System Response is an advanced fitting routine that fits multiple numbers of damped sinusoids to the standard equation of motion. When System Response Compensation is enabled, it is possible to view the Power Spectral Density of the Residual Signal.

NOTE In most applications, it is not necessary to use System Response Compensation. It is designed for field applications in which the measurement surface is hollow, or otherwise unstable.

In a laboratory, or stable, pier-type situation, it is not necessary to use System Response Compensation.

It is recommended to only use System Response in post processing mode, because it can mask a problem with the site (by flattening out a residual signal that would otherwise indicate a problem).

To Apply System Response Compensation

To apply System Response Compensation, check the **Apply** box and press the **Setup** button on the **Control** tab page of the **Setup** dialog. The **Frequency Response Setup** dialog shown in Figure 3-12 appears. It is recommended to accept the default values:

- Max Number of Terms: 3
- Significance Threshold: .07
- Minimum Frequency (Hz): 15 Hz

Frequency Response Setup	×
Max Number of Terms:	3
Significance Threshold: Minimum Frequency (Hz):	15
ОК	Cancel

Figure 3-12 Frequency Response Setup Dialog

Uncertainty Section

Drop rejection significance determines which drops are automatically rejected by the g-software. The default value is three which means that in a set, any drop that is more than 3σ from the mean is rejected.

NOTE This function is purely statistical, there is no hardware information used to reject drops.

Uncertainties Dialog

Click the **Setup** button under the **Uncertainty** section of the **Control** tab to display the **Uncertainties** dialog shown in Figure 3-13.

The statistical uncertainty estimate is based on the estimated uncertainties from many different components of the measurement. Components are grouped into four separate areas:

- Modeling Uncertainties
- System Uncertainties
- Environmental Uncertainties
- Set-up Uncertainties

Uncertainties	<u>۲</u>
Modeling Earth Tides Factor: 0.001 Ocean Load Factor: 0.1 Barometric (μGal): 1 Polar Motion (μGal): 0.05	Environmental Tide Swell (μGal): 0 Water Table (μGal): 0 Unmodeled (μGal): 0
System Laser (µGal): 0.01 Clock (µGal): 0.5 System Model (µGal): 1	Set-up System (μGal): 1 Grad. Uncert. (μGal/cm): 0.03 Gradient (μGal): 0.91 (Uncertainty due to gradient
System Model FG5 Total (quadrature) Sys	depends on vertical transfer)

Figure 3-13 Setup: Control Tab Uncertainties Dialog

The default values are determined from previous publications and from in-house experience. Refer to the <u>Uncertainties Setup</u> <u>Dialog Components Description</u> section below for details.

On the lower left hand corner of the **Uncertainties** dialog (refer to Figure 3-13) is a **System Mode**l drop-down list and an **Update** button in the right hand corner. To use the default values for a specified instrument choose the appropriate instrument in the drop down list and press the **Update** button.

g-software now calculates the total uncertainty for each set and for the final project gravity value. The total uncertainty is given by:

$$\delta_{tot} = \sqrt{\delta_{sys}^2 + \delta_{stat}^2}$$

where $\delta_{\rm stat}$ is the statistical uncertainty given by the set scatter (standard deviation) divided by the square root of the number of sets:

$$\delta_{\scriptscriptstyle stat} = \sigma_{\scriptscriptstyle set} \, / \sqrt{N_{\scriptscriptstyle set}}$$
 ,

and $\delta_{\mbox{\tiny sys}}$ is the total systematic uncertainty, which is described below

Uncertainties Dialog Options Description

Modeling Section

Modeling uncertainties usually do not vary from station to station or among different instrument serial numbers or models. The default values are guidelines only. For details, including position and seasonal variation see Niebauer *et al.*, "A New Generation of Absolute Gravimeters, Metrologia, 1995".

Recommended values for modeling uncertainties are seen in table Table 3-6.

Table 3-8 Recommended Values For Modeling Uncertainties

Barometric	1.0 µGal
Polar Motion	0.05 µGal

The errors for the earth tide and ocean load calculations are estimated as fractions of the size of the actual correction (determined at the time of the measurement) and nominal values are listed in Table 3-7.

Table 3-9 Nominal Earth Tide And Ocean Load Uncertainties

Earth Tide Factor	0.001 x Correction
Ocean Load Factor	0.1 x Correction

Examples:

If at a given time the earth tide correction is 50 μ Gal, then the uncertainty on the correction is 0.05 μ Gal.

System Section

System uncertainties vary depending on what elements are contained in the absolute gravimeter system. FG5 are the most accurate and precise MGL instruments, and observations taken from these types of instruments should be weighted much more than those taken from an FGL. Refer to Table 3-8 for recommended values.

Laser	0.05 μGal (WEO) 0.1 μGal (ML-1)
Clock	0.5 µGal (Rubidium Oscillator)
System Model	μGal (FG5) 10 μGal(A10) 5 μGal(A5) 10 μGal(FGL)

Table 3-10 Recommended Values For Modeling Uncertainties

Environmental Section

Environmental errors are highly site dependent and should be modified by only experienced users. Recommended values for all environmental uncertainties are 0.0µGal (zero) unless a user is very knowledgeable about the site in question.

Setup Section

System (µGal) uncertainties are dependent on both the instrument and the operator.

Example:

Set-up errors change according to the instrument and may be increased with respect to the operator.

- An experienced operator can set up an FG5 with a system error of 1.0 $\mu \text{Gal.}$
- An experienced relative meter operator can measure a gradient to 0.03 µGal/cm.

Grad Uncert. is set to 0.03μ Gal/cm (For experienced relative meter operators).

Drop Fit Section

The **Drop Fit** section sets parameters which allow a subset of the collected fringes to be processed (to avoid fitting during the sensitive release and catch phases of the drop). Default parameters for an FG5 (A10/FGL) are:

- Start Time = 35 (20) ms
- Stop Time = 200 (135) ms
- Start Fringe
- Total Fringes

Fit Sensitivity Section

The calculated gravity value is determined using the fringes selected in the **Drop Fit** section. Ideally, this value is not heavily dependent on the choice of these fringe values. The **Fit Sensitivity** plots in the **View** menu allow the user to determine the change in the calculated gravity value as different portions of the drop fit are processed. By default, a few milliseconds around the start time and stop time are plotted. Typically the gravity value should be constant within a few μ Gals. Given the nominal fit times above, the sensitivity settings for an FG5 (A10/FGL) should be approximately:

- Top Start -25 (15) ms
- Top Stop -45 (25) ms
- Bottom Start -195 (130) ms
- Bottom Stop -205 (140) ms

Spectrum Section

To enable this feature, check **Enable** and enter the **Interval (Hz)** and **Start Freq (Hz)** and **Stop Freq (Hz)**.

The graph can then be accessed in the **View** menu of the main g-software window. The graph shows the current drop spectrum in green and the average set spectrum in blue. Refer to Figure 3-14.

NOTE The System Response must be enabled to view the spectrum.

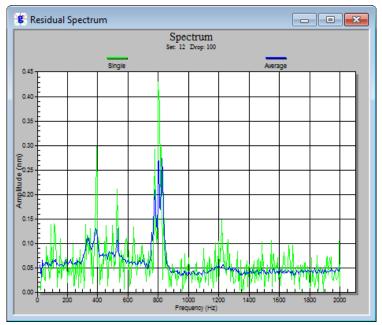


Figure 3-14 Drop Residual Spectrum Graph

Seismometer Section

Checking **Compensated** in the **Seismometer** section enables the compensation of the seismometer data when used on the FGL Prototype instruments.

Comments Tab

Users may enter up to 100 lines of field or processing notes in this section. To enter a new line, press **CTRL** + **ENTER**. Refer to Figure 3-15.

Setup	x		
Information System Acquisition Control Comments			
Instrument Operator: Kip			
Company/Institution:			
test run 🔺			
-			
, (Hit Ctrl + Enter for newline)			
OK Cancel App	ly		

Figure 3-15 Setup: Comment Tab

4. BEGINNING ACQUISITION OR REPROCESSING

Start Processing	
State Dialog	
Drop Gravity Dialog	
Set Gravity Dialog	
Residuals Dialog	

Start Processing

Once g-software is setup according to user-set parameters, it is ready to begin processing the data. There are three ways to start processing:

- 1. Select Go from the Process menu.
- 2. Press the "Go" button (►).
- 3. Press F5.

In real time mode, the drops occur as configured in the **Acquisition** tab page in the **Setup** dialog. In Post-Processing mode, the drops are processed as configured in **Rate** dialog accessed from the **Process** menu.

NOTE If a minor problem is detected in the setup as acquisition begins, simply click the "Pause" button, fix the problem detected, and then resume processing by clicking the "Go" button.

As the project progresses, the Set data filenames are displayed in the **Project** navigation panel (located on the left side of the g-software main window). In the example shown in Figure 4-1, each set is named sequentially, (001 through XXX, where XXX is the total number of sets collected) with the project name used as the prefix and ."gsf" as the suffix.

By default, g-software opens four dialogs of the data at startup. Each dialog can be enabled by clicking the tab control at the bottom of the g-software window.

The four default dialogs are:

- State
- Drop Gravity
- Set Gravity
- Residuals

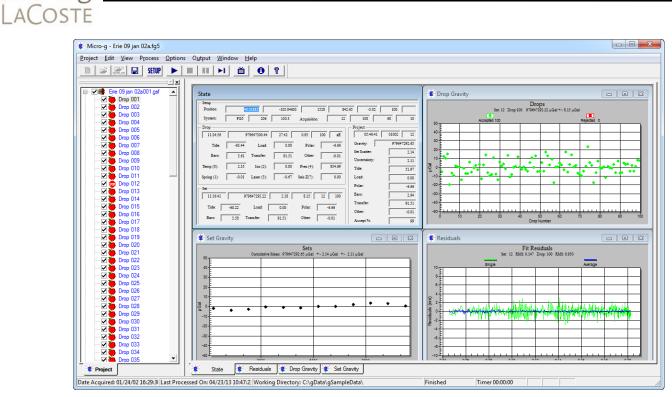


Figure 4-1 g-software Main Window Showing Open Project File

State Dialog

MICRO'g

The **State** dialog is the main dialog that g-software uses to convey information to the user. The **State** dialog contains four separate sections: **Setup**, **Drop**, **Project**, and **Set**. Each section is described below. The meaning of each box value is displayed by "hovering" the mouse cursor over the box until the "tool tip" appears. Refer to Figure 4-2

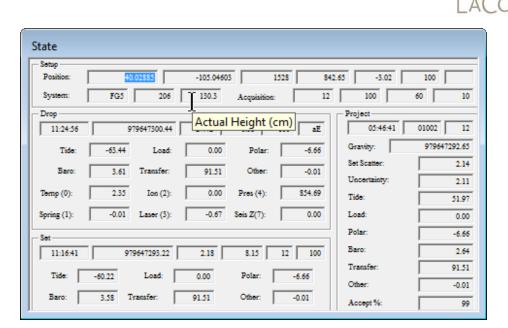


Figure 4-2 State Dialog Example Tool Tip: Actual Height (cm)

Setup Section

The Setup section displays basic setup and station information.

Position

- Latitude
- Longitude
- Elevation (m)
- Standard Pressure (mBar)
- Gradient (µGal/cm)
- Transfer Height (cm)

System

- Meter Type
- Meter Number (Serial Number)
- Actual Height (cm)

Acquisition

The Acquistion section indicates the drop rate parameters.

- Number of sets to be acquired
- Number of drops per set
- Set Interval (min): Time interval in minutes between sets
- Drop Interval (sec): Time interval in seconds between drops

MICRO

Drop Section

The **Drop** section displays information about each individual drop:

- Drop Time
- Drop Gravity Absolute Gravity Value (µGal):
- Drop Sigma: Standard deviation
- Drop RMS (Root Mean Square Residual size) (nm)
- Drop Number
- Drop Acceptance/LASER PEAK
 - Accepted (a) or Rejected (r)
 - Laser Lock peak (e-h for WEO laser, r-b for L series)
- Tide: Tide correction (µGal)
- Load: Ocean loading correction (µGal)
- Polar: Polar Motion correction (µGal)
- Baro: Barometer correction) (µGal)
- Transfer: Transfer height correction (µGal)
- Other: Ref Xo Reference Xo correction (µGal)
- Temp (0):Temp (Channel: 0) (Temperature °C)
- Ion (2): Channel 2 Ion pump monitor (V)
- Pres (4): (Channel: 4) barometric pressure (mBar)
- Spring (1): (Channel: 1) Super spring position (V)
- Laser (3): (Channel: 3) Laser output (V)
- Seis Z (7): (Channel: 7) Average seismometer reading (V).

Set Section

A group of drops is referred to as a "set". The Set section displays information about each individual set.

- Set Time Mean: time of the accepted drops in the set
- Mean Set Gravity: Mean absolute gravity for current set (µGal):
- Set Total Uncertainty: Total uncertainty (µGal)
- Set Drop Scatter: Drop to drop scatter for current set (µGal)
- Set Number: Number of the current set in Project
- Percentage of accepted drops
- Tide: Mean tide correction(µGal)
- Load: Mean ocean loading correction(µGal)
- Polar: Mean polar motion correction(µGal)
- Baro: Mean barometric correction(mbar)

- Transfer: Mean datum transfer correction(µGal)
- Other: Mean reference Xo correction. (µGal)

Project Section

The group of all the sets constitutes a "project". Summary information about the project is displayed:

- Project Mean Time of sets processed
- D.O.Y (dddyy) Day of year
- # of Sets completed
- Gravity: Total average gravity value over all sets (µGal)
- Set Scatter: Set to set standard deviation (µGal)
- Uncertainty: Total uncertainty in (µGal)
- Tide: Mean tide correction for project (µGal)
- Load: Mean ocean loading correction for project (µGal)
- Polar: Mean polar motion correction (µGal)
- Baro: Mean barometric correction(µGal)
- Transfer: Mean datum transfer value (µGal)
- Other: Mean reference Xo correction (µGal)
- Accept %: Total fraction of drops not rejected

Drop Gravity Dialog

The Drop Gravity dialog displays individual drops minus the mean value of the set. Accepted drops, i.e. those that are within the user-selected statistical range, are plotted in green and the rejected drops are plotted in red. The current set number, the current drop number, the current drop-to-drop scatter of the set, as well as the number of drops accepted and the number of drops rejected are listed above the graphics.

Set Gravity Dialog

The Set Gravity dialog displays individual set gravity values minus the mean value of the project.

Each set is plotted with an error bar that indicates the range of the uncertainty for the individual set (based on the drop scatter). The current cumulative mean for the project, the set to set scatter, and the total uncertainty of the project mean are displayed above the graphics.

For g-software Versions 6 and later, the current set value is updated with each drop. This is true after the first set is

complete. This allows quick verification that the mean value is consistent with earlier sets.

Refer to Figure 4-3 for an example current set value update. The first five sets are complete (120 drops each) and the 6^{th} set is only on drop #3. The mean value of the 6^{th} set will approach the established mean, and the error bars will decrease as more drops are acquired.

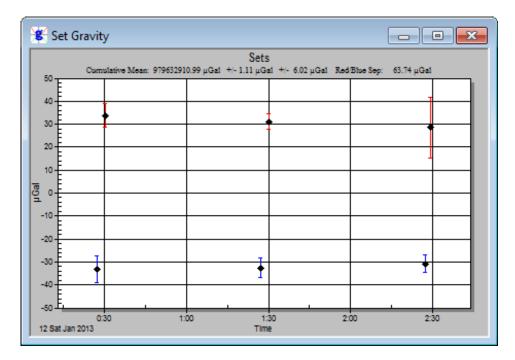


Figure 4-3 A10 Example Data: Current Set Value Update (A10 example data)

Residuals Dialog

The Residuals dialog displays the Fit Residuals signal (the difference between the actual fringe time and the least squares fit estimate of the position at that time).

Drop Residuals with System Response Disabled

Figure 4-4 shows a Drop Residuals example with the system response disabled. The green signal is the residual vector from the current drop, while the blue signal represents the average residual of the accepted drops so far. If the instrument is working properly, the blue signal should always be smaller in

amplitude than the green signal. If a drop is rejected, its residual signal is plotted in red.

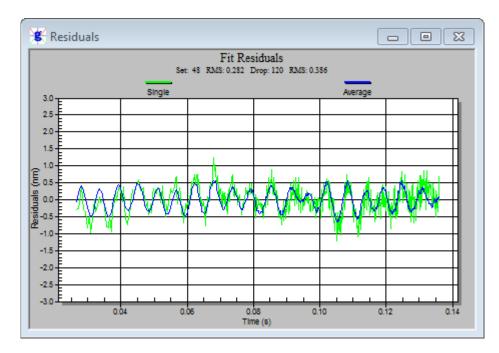


Figure 4-4 Drop Residuals: System Response Disabled

Drop Residuals with System Response Enabled

Figure 4-5 shows an example of a Drop Residuals with the system response enabled. The orange signal is the compensated residual vector from the current drop, the green signal is the uncompensated residual vector from the current drop, and the purple signal represents the compensated average residual of the accepted drops.

Figure 4-5 Drop Residuals: System Response Enabled

5. ADDITIONAL DIALOGS

Specific Post Processing Features	
Project Navigation Panel	
Reviewing Processing Parameters	
Output File Status	
Processing Status	
Processing Finished	5-10
Reviewing Processing Results	5-11
Project Summary File	5-11
Set Summary file	5-13

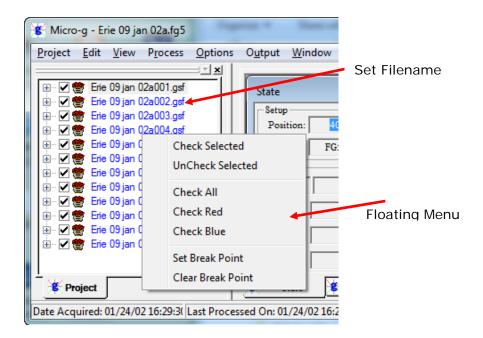
In addition to the default dialogs: **State**, **Drop Gravity**, **Set Gravity** and **Residuals**, g-software also provides a variety of dialogs to convey information about the processing (or data acquisition) status. Table 5-1 provides description of each g-software dialogs accessible from the **View** menu.

Dialogs	Description
Set Gravity	Displays individual set gravity values minus the mean value of the project.
Set Histogram	Displays a histogram of the processed sets. In general, users should expect to see normally distributed data.
Set Sensors	Displays five separate charts. These charts show the default channels for a Micro-g LaCoste Patch Panel: Temperature, Super Spring, Ion Pump, Laser and Barometer.
Set User Sensors	Displays up to six separate charts if enables. These charts show the user channels 5-10. Not all of these channels are available with every system.
Set Corrections	Displays six separate charts, one for each type of correction applied to the calculated gravity value: Tide, Ocean Loading, Polar Motion, Barometric, Datum Transfer and Reference Xo. Units are in µGals (with the exception of the barometer in mbar).
Set Horizontal Pos	For future use.
Set Vertical Pos	For future use.
Set Fit Sensitivity	Displays the standard deviation of the fit sensitivities for each set.
Drop Gravity	Displays individual drops relative to the mean value of the set.
Drop Histogram	Displays a histogram of the processed drops for the currently processed set. In general, users should expect to see normally distributed data.
Drop Sensors	Displays up to five charts for the currently processed set. These charts show the default channels for a Micro-g LaCoste Patch Panel: Temperature, Super Spring, Ion Pump, Laser and Barometer.

Table 5-1 g-software Dialogs And Description

Dialogs	Description
Drop User Sensors	Displays up to six separate charts if enables. These charts show the user channels 5-10. Not all of these channels are available with every system.
Drop Corrections	Displays six separate charts, one for each type of correction applied to the calculated gravity value for the current set: Tide, Ocean Loading, Polar Motion, Barometric, Datum Transfer and Reference Xo. Units are in µGals (except for the barometer which is in mbar).
Drop Parabola	Displays the trajectory of the object with time on the X axis and distance on the Y axis. This graph is useful to view dropping chamber and fringe data acquisition performance.
Drop Seismometer	This view is applicable for "LS" meters only and has two components.
	If seismometer data is used directly in the solution, the graph shows the compensated versus uncompensated residuals (nm).
	If the seismometer data is not used in the solution, the graph shows the seismometer velocity (mV).
Drop Residual PSD	This view shows an auto scaled Power Spectrum Density (PSD) of the residual signal.
	NOTE: Frequency Response must be enabled.
Drop Fit Sensitivity (Top and Bottom)	Displays the change in the calculated gravity value as different portions of the drop fit are selected. Values are displayed relative to the value determined at the nominal fit selected from the Control tab page in the Setup dialog.
Drop Residuals Spectrum	Displays the drop and average set residual spectrum. This must be enabled in the Control tab page in the Setup dialog.

NOTE Viewing many displays can significantly slow down data processing and this can in turn result in potential memory violations. If your system does not have a high end graphics card (>32mb on-board memory), minimize the number of open views.



Specific Post Processing Features

Project Navigation Panel

g-software automatically displays the **Project** navigation panel at start-up when opening an existing project (where data has already been acquired). The Project navigation panel is located on the left side of the g-software main window. The Project navigation panel is used to select which sets are to be processed and to set a break point in the processing if necessary.

Figure 5-1 shows a detailed view of the Project navigation panel. The check boxes to the left of the Set Filename indicate whether or not the set is included in the processing. Sets may be checked or unchecked by placing the mouse cursor directly over the box and clicking the left mouse button.

Figure 5-1 Example Project Navigation Panel: Control Dialog

Optionally, single click the left mouse to highlight a set. To highlight multiple sets, highlight one set then use the $\langle SHIFT \rangle$ key and $\langle \uparrow \rangle$ or $\langle \downarrow \rangle$ arrow keys accordingly.

The right mouse button brings up the floating menu (Refer to Figure 5-1). Table 5-2 describes the available menu options.

Menu Option	Description
Check Selected	Checks all highlighted sets.
UnCheck Selected	Unchecks all highlighted sets.
Check All	Checks all sets.
Check Red	Checks all odd numbered sets (for use in ML-1 Red/Blue Lock Analysis)
Check Blue	Checks all even numbered sets (for use in ML-1 Red/Blue Lock Analysis)
Set Break Point	Places a "Break Point" marker by the selected set. g-software processes up to the break point and then pauses.
Clear Break Point	Clears the breakpoint.

T				
Table 5-2 Pro	ect Navidation	n Panel: Contro	I Dialog Menu O	ptions
	col navigation		i Dialog menu o	ριιο

When reprocessing data for the first time after collecting data and reopening a project, it is best to process all sets in the project, then go back and delete unwanted sets.

Click **Quick Update** under the **Process** menu to quickly recalculate the mean project gravity value and update the set views if no parameters are changed. If any processing parameters are changed, g-software automatically recalculates gravity for the entire data set.

Reviewing Processing Parameters

Processing parameters may be reviewed and/or modified in the **Setup** dialog. From the **Process** menu select **Setup**. It can also be accessed by pressing the **F3** key. Listed below are the Setup parameters that may be altered before reprocessing old data.

Information Tab

The instrument location parameters are entered on the Information tab page. The user can enter: Site Name, Site Code, Latitude, Longitude, Elevation, Nominal Pressure, Gravity Gradient, Transfer Height, Measured Setup Height, Barometric Factor, Polar motion values. Refer to <u>Section 03 "Information</u> <u>Tab"</u> for additional information.

System Tab

Parameters for the system are entered on the System tab page. Refer to <u>Section 03 "System Tab"</u> for additional information.

Information about Instrument Type, Model Serial Number, Interferometer Type, Laser Type (and wavelengths if applicable), Seismometer data collection enabled (if applicable, FGL Series instruments only), Analog to Digital data acquisition card and setup, Serial Barometer setup can be entered. The Advanced parameters may also be changed.

Acquisition Tab

The Acquisition parameters may not be changed in post-processing. <u>Refer to Section 03 "Acquisition Tab"</u> for example screen shot and additional information.

Control Tab

All control parameters may be changed with the exception of the laser lock (WEO) or alternate (ML1) functions. <u>See Section</u> <u>03 "Control Tab"</u> for example screen shot and additional information.

Comments Tab

The Comments tab page is used to record the measurement specific operator, organization and comments. Users may enter up to 100 lines of field or processing notes in this section. To enter a new line, press **CTRL** + **ENTER**.

Output File Status

After starting to reprocess data, g-software asks the user if the current existing Project Summary and Set by Set Summary files should be overwritten. g-software creates these two output ASCII text files by default. Refer to <u>Section 05 "Reviewing</u> <u>Processing Results"</u> for additional information and to Figure 5-4 and Figure 5-5 for an example output files.

- Project Summary File
 - By default, the files are named <project name>.project.txt
 - Figure 5-4 displays an example file.
- Set by Set Summary File
 - By default, the files are named <project name>.set.txt.
 - Figure 5-5 displays an example file.

ACOSTE	
	To change the names of the output files to preserve prior processing results:
	 Enter NO when prompted to overwrite the current existing Project and Set summary files. Enter YES and the existing files are overwritten. Enter your default base name. For Example: "goutput1" g-software creates two ACSII text files: goutput1.project.txt and goutput1.set.txt Press OK button to begin processing the data. When processing is complete, the computer beeps twice and the bottom message panel indicates "Finished".
NOTE	The beeps do not sound from an installed sound card but only the computer's local speaker
	 Use a Windows Explorer to navigate to the gSampleData folder. The folder displays both goutput2.project.txt and goutput2.set.txt These files are ACSII text and can be opened with any text editor.

Processing Status

Using the default dialogs **State**, **Drop Gravity**, **Set Gravity** and **Residuals**, the data processing status can be quickly evaluated. In the following examples, a break point is set at Set 3 to pause the processing. The screen shown in Figure 5-2 is captured immediately following the last processed drop of Set 2. The **Stop** icon in the Project navigation panel indicates the break point shown in Figure 5-2.

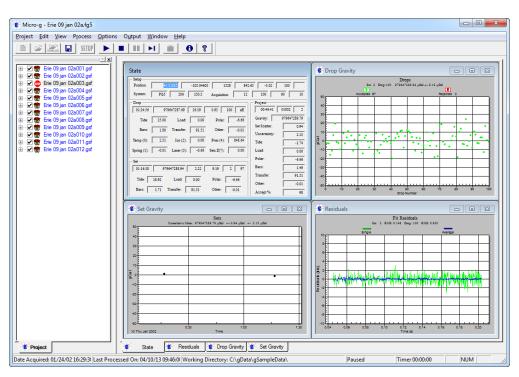


Figure 5-2 Processing Status After Completion of Set #2

The **Set Gravity** dialog in the lower left hand corner of the g-software main window shows the two previously processed sets and their Uncertainty error bars. The two sets are plotted with the mean subtracted. The mean value is displayed above the graph. Refer to Figure 5-2.

The **Residuals** dialog in the lower right hand corner of the g-software main window shows the average residual signal for Set 2 in blue and the single drop residual signal for Drop 100, Set 2 in green. Refer to Figure 5-2.

The **Drop Gravity** dialog in the upper right hand corner of the g-software main window shows all the gravity values for Set 2 with the mean subtracted. Refer to Figure 5-2.

The **State** dialog in the upper left hand corner of the g-software main window shows text information for Drop 100-Set 2, Set 2, and the cumulative average for the entire project. Refer to Figure 5-2 and Figure 5-3.

Set Polar: -6.66 01:16:38 979647238.94 2.22 9.19 2 97 Number Tide: 18.92 Load: 0.00 Polar: -6.66 Baro: 1.71 Transfer: 91.51 Other: -0.01 Accept %: 98	Drop Number	State Setup Position: 40.02855 -105.04603 1528 842. System: FG5 206 130.3 Acquisition: 12 Drop 01:24:36 979647287.69 26.39 0.93 100 aE 156e: 25.00 Load: 0.00 Polar: -6.66 Baro: 1.80 Transfer: 91.51 Other: -0.01 Temp (0): 2.31 Ion (2): 0.00 Pres (4): 848.64 Spring (1): -0.01 Laser (3): -0.66 Seis Z(7): 0.00	100 60 10 Project 00.46.41 01002 2 Gravity: 979647239.79 9 Set Scatter: 0.94 0.94 Uncertainty: 2.13 1 Tide: -1.74 0.00	Cumulative mean
Deto. [/] Itensio. 9[.3] Outor0.0]		01:16:38 979647288.94 2.22 9.19 2 97 Tide: 18.92 Load: 0.00 Polar: -6.66	Baro: 1.49 Transfer: 91.51	

Figure 5-3 Example State Dialog

The **State** dialog is always displayed and contains the most information of any of the twelve views.

In Figure 5-3, basic project setup information is shown in the **Setup** section (First Section) of the **State** dialog.

- Position (40.02885, -105.04603, 1528)
- Nominal pressure (842.65)
- Gradient (-3.02)
- Instrument type and serial number, (FG5 206)
- Acquisition parameters (12 sets, 100 drop/set, 60 minute set intervals, 10 second drop intervals).

Many of the boxes are not labeled in order to maximize the information displayed and keep the view uncluttered. Hovering the mouse cursor over each box, displays a "tool tip" including units and a description of the value.

Information pertaining to the current drop being processed is displayed in the **Drop** section (Second Section) of the **State** dialog in Figure 5-3:

- Time of the drop (01:24:56)
- Corrected absolute gravity value of the last drop (979647287.69)

- Standard deviation of the drop (26.39)
- RMS of the drop fit (nm) (0.93)
- Drop number (100)
- Drop accepted or rejected and the peak lock
 - "aE" implies accepted, E lock.
 - "a" accepted, "r" rejected.

The next six boxes show the corrections in μ Gal for:

- Tide (25.00)
- Ocean loading (0.00)
- Polar motion (-6.66)
- Barometric (1.80)
- Datum transfer (91.51)
- Reference Xo (-0.01)

The final six boxes show the current value of the sensor channels for only the first six channels. All values are listed in Volts and correspond to the standard patch panel configuration on all Micro-g LaCoste instruments.

The **Set** section (Third Section) contains information pertaining to the current set being processed. In the case of Figure 5-3 it is Set two.

- Average time of the accepted drops used to calculate the set mean (01:16:38)
- Average corrected gravity value (979647288.94)
- Uncertainty of the set in μ Gal (2.22)
- Drop to drop scatter in µGal (9.19)
- Set number (2)
- Number of drops accepted (97)

The next six boxes display the average value of the corrections applied in μ Gal:

- Tide (18.92)
- Ocean loading (0.00)
- Polar motion (-6.66)
- Barometric (1.71)
- Datum Transfer (91.51)
- Reference Xo (-0.01).

The **Project** section (Right Side) contains information pertaining to the current state of the project through the last processed set. Refer to Figure 5-3.

- Average time of the sets (00:46:41)
- Day of the year and last two digits of the current year (01002)
 The tenth day of the year 2002
- Last processed set (Set 2).
- Average corrected gravity (979647289.79)
- Set to set scatter (0.94 µGal)
- Set uncertainty (2.13 µGal)
- Average applied corrections for the current project in µGal.

Processing Finished

Two "beeps" sound from the computer's speaker indicating processing is complete and the bottom message panel indicates "Finished".

NOTE The beeps do not sound from an installed sound card but from the computer's local speaker.

For the example the final gravity value is 979647292.67 μ Gal with a set scatter of ±2.26 μ Gal and a total uncertainty of ±2.24 μ Gal.

Reviewing Processing Results

Use Windows Explorer to navigate to the gSampleData folder. The summary output status files are located in this folder and are ASCII text that can be opened with any text editor. The example summary files (goutput1.project.txt and goutput1.set.txt) are found in this folder.

Project Summary File

The project summary file is designed to be a snapshot of the acquisition and data processing. It is intended to serve as the primary resource for archiving absolute gravity data. Figure 5-4 is an example of the project summary file.

The output data is divided into related sections:

- File creation and Header Information
- Station Information
- Instrument Data
- Processing Results
- Gravity Corrections
- Uncertainties
- Comments.

Depending on the options selected (Laser, Tide Model, Ocean Loading), sections may include additional information.

Microg LaCoste

Erie 09 jan 02a.project.txt - Notepad File Edit Format View Help Micro-g LaCoste g Processing Report File Created: 04/10/13, 09:47:17 Project Name: Erie 09 jan 02a g Acquisition Version: 1.121700 g Processing Version: 9.120423 Company/Institution: Operator: Kip Station Data Station Data Name: Micro-g Solutions Inc. Site Code: MGSNU Lat: 40.02885 Long: -105.04603 Elev: 1528.00 m Setup Height: 14.00 cm Transfer Height: 100.00 cm Actual Height: 130.30 cm Gradient: -3.020 µGal/cm Nominal Air Pressure: 842.65 mBar Barometric Admittance Factor: 0.30 Polar Motion Coord: -0.1829 " 0.3169 " Instrument Data Meter Type: FG5 Meter 5/N: 206 Factory Height: 116.30 cm Rubidium Frequency: 10000000.00000 Hz Laser: WE0100 (asdf; lkj) ID: 632.99117754 nm (-0.36 V) IE: 632.99119473 nm (-0.73 V) IF: 632.99123023 nm (-1.30 V) IG: 632.99123023 nm (-1.30 V) IH: 632.99139820 nm (-1.43 V) II: 632.99139822 nm (-1.20 V) II: 632.99142704 nm (-0.90 V) Modulation Frequency: 8333.420 Hz Instrument Data Modulation Frequency: 8333.420 Hz Processing Results Date: 01/10/02 Time: 00:46:41 DOY: 010 Year: 2002 Time Offset (D h:m:s): 0 0:0:0 Gravity: 979647289.79 µGal Set Scatter: 0.94 µGal Measurement Precision: 0.67 µGal Total Uncertainty: 2.13 µGal Number of Sets Collected: 12 Number of Sets Processed: 2 Set #s Processed: 1,2,3,4,5,6,7,8,9,10,11,12 Number of Sets NOT Processed: 10 Set #s NOT Processed: 10 Set #s NOT Processed: 10 Total Drops Accepted: 196 Total Drops Rejected: 4 Total Fringes Acquired: 700 Fringe Start: 30 Processed Fringes: 600 GuideCard Multiplex: 4 GuideCard Scale Factor: 250 Acquisition Settings Acquisition Settings Set Interval: 60 min Drop Interval: 10 sec Number of Sets: 12 Number of Drops: 100 Gravity Corrections Earth Tide (Berger): -1.74 µGal Tidal DC Term: 1.00 Polar Motion: -6.66 µGal Barometric Pressure: 1.49 µGal

Figure 5-4 Example Project Summary File

Set Summary file

The set summary file contains set by set information. Figure 5-5 is an example set summary file. The file is tab delineated and is easily imported into most spreadsheet program.

The information captured in the Set Summary file includes:

- Set Number
- Time, Day of Year, Year
- Gravity
- Set Standard Deviation
- Set measurement precision
- Set uncertainty
- Tide correction,
- Barometric correction
- Polar motion correction,
- Datum transfer correction
- Reference Xo correction,
- Temperature
- Pressure
- Auxiliary channels
- Number of drops accepted
- Number of drops rejected.

📄 Erie O	9 jan 02b.set.txt - Notep	ad																						x
file fd	it Format ⊻iew <u>H</u> el	lp																						
g Acqu g Proc	Data Filename: isition version: essing Version:	1.121700				ad da							-											*
1 2 3 4	Time DOY 00:16:44 01:16:38 02:16:41 03:16:41	Year 010 010 010 010	Gravity 2002 2002 2002 2002	979647290.831 979647288.936 979647290.285 979647292.578	Uncert 10,244 9,188 8,549 9,434	Tide 1.030 0.933 0.855 0.943	Load 2.267 2.225 2.194 2.231	-22.399 18.923 62.735 101.224	Polar 0.000 0.000 0.000 0.000	Transfer 1.273 1.712 2.104 2.221	-6.664 -6.664 -6.664 -6.664	91.506 91.506 91.506 91.506	-0.008 -0.009 -0.009 -0.009	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	SelfAttr: 0.000 0.000 0.000 0.000	2.327 84 2.319 84 2.294 84 2.290 85	6.894 8.355 9.664 0.054	0.005 0.005 0.005 0.005	-0.018 -0.016 -0.014 -0.014	chan6 99 97 100 100	Accept 3 0	кејес	
5678	04:16:41 05:16:41 06:16:41 07:16:41	010 010 010 010	2002 2002 2002 2002	979647292.009 979647291.425 979647292.873 979647292.881	8.494 8.228 9.117 8.202	0.849 0.823 0.912 0.820	2.195 2.185 2.219 2.182	127.250 135.743 124.907 96.698	0.000 0.000 0.000 0.000	2.275 2.631 2.887 3.031	-6.664 -6.664 -6.664	91.506 91.506 91.506 91.506	-0.009 -0.009 -0.009 -0.009	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	2.294 85 2.304 85 2.313 85 2.313 85	1.419 2.273 2.754	0.005 0.005 0.005 0.005	-0.015 -0.015 -0.016 -0.016	100 100 100	0000		
10 11 12	08:16:41 09:16:41 10:16:41 11:16:41	010 010 010 010	2002 2002 2002 2002	979647294.887 979647296.308 979647296.070 979647293.224	8.519 8.670 9.292 8.147	0.852 0.867 0.929 0.815	2.193 2.198 2.223 2.179	56.454 11.733 -29.399 -60.220	0.000 0.000 0.000 0.000	3.152 3.334 3.487 3.578	-6.664 -6.664 -6.664 -6.664	91.506 91.506 91.506 91.506	-0.010 -0.010 -0.011 -0.011	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	2.321 85 2.331 85 2.340 85 2.346 85	3.765	0.004 0.004 0.004 0.004	-0.016 -0.017 -0.017 -0.018	100	000		
4																								

Figure 5-5 Example Set by Set Summary File

6. TIDE CORRECTION MODELS

Berger	6-1
ETGTAB Setup	
Potential Filename Section	6-3
Ocean Load Files Section	6-3
Advanced Users	6-7
Load Terms Dialog	6-7
Oceanloading Format	6-8
g Binary Data Files Structure	
Project Files (fg5)	6-9
Gravity Set Files (.gsf)	6-9

g-software provides two Tide Correction methods, ETGTAB and Berger. Within each it is possible to incorporate an Ocean Loading model. Most users should use the modern ETGTAB routine, though the Berger model is also provided for completeness.

The amplitude and the phase of the gravity loading are computed using the Farrell's method. The Green's functions for the PREM model are used and a correction for the mass conservation is included.

Users may choose different ocean tide models. Details of the choices and options are discussed below.

Berger

In the Berger correction, the tidal parameters are set using a constant delta factor of 1.1554 and a phase Kappa (κ) of zero. This delta factor cannot be modified except for the DC term (Honkasalo correction). The tidal potential is also set once for all.

The gravity body tide is computed and applied to the observations (each drop). The program used for this computation was originally written by Jon Berger, November 1969, and was modified by J. C. Harrison, Judah Levine, and Karen Young, University of Colorado; Duncan Agnew, University of California San Diego (IGPP); and Glenn Sasagawa, NOAA.

An example Berger setup dialog is shown in Figure 6-1. Access the Berger setup dialog by selecting **Setup** under the **Process** menu. From the **Control** tab page in the **Setup** dialog, select **Berger** from the drop down list then click Setup.

Setup	nts
Tidal Correction Berger Setup	Reference (1969) et. al Setup
Gystem response comparized and particular Reje Crop Fit Start Time (ms): [44.01 Stop Time (ms): [20 Start Fringe: 30 Total Fringes: Update Fringe Windows Spectrum Enable Start Freq (Hz): Interval (Hz): 5	Ocean Loading: Or Off Ocean Loading File: Micro-g.olf DC Term: 1
Seismometer	Run Ocean Load OK Cancel

Figure 6-1 Setup Control Tab and Berger(1969) et. Al Setup Dialog

ETGTAB Setup

Microg LaCoste

From the **Control** tab page of the **Setup** dialog, select **ETGTAB** from the drop down list box. Click the **Setup** button to display the **ETGTAB Setup** dialog shown in Figure 6-2.

The ETGTAB Setup dialog has two separate sections:

- Potential Filename
- Ocean Load Files
 - Delta Factor Filename
 - Ocean Loading Filename

For more advanced ETGTAB information contact Olivier Francis at (<u>olivier.francis@uni.lu</u>).

ETGTAB Setup
Potential Filename
C:\gData\gWavefiles\ETCPOT.dat
(ETCPOT.DAT or equivalent)
Ocean Load Files
Delta Factor Filename
Model C Observed
Micro-g.dff
(ETGTAB.INI, *.dff or equivalent)
- Ocean Loading Filename
⊙ On C Off
Micro-g.olf
Run Ocean Load
✓ Default Setup
OK Cancel

Figure 6-2 ETGTAB Setup Dialog Box

Potential Filename Section

Enter the Tidal Generating Potential File name in the **Potential Filename** section in the **ETGTAB Setup** dialog. The default filename is ETCPOT.dat and is located in the gWavefiles folder. The default file contains Tamura's potential.

Ocean Load Files Section

Tidal Parameters Filenames

The Tidal Parameters file can be supplied by the user or generated prior to data acquisition or reprocessing.

The default setup for g-software is enabled by checking the **Model** option in the **Delta Factor Filename** section of the **ETGTAB Setup** dialog and the **Default Setup** box located at the bottom of the dialog. A .dff file is generated by the Ocean Load (Model). The format of the file is shown in Figure 6-3

NOTE	This setup does not contain any ocean loading component. Phase κ (Kappa) is set to zero.
	If a compatible model or observed tidal parameter file for the gravity station is available, uncheck the Default Setup box and if applicable, check the Observed radio button in the Delta Factor Filename section of the ETGTAB Setup dialog.
NOTE	An "Observed" Gravimetric Delta and Kappa Factors File contain the Ocean Loading component, and therefore the Ocean Loading Filename option is disabled automatically.

OceanLoad-M/	AJ-MAJ.dff - No	otepad					x
<u>F</u> ile <u>E</u> dit F <u>o</u> rm	at <u>V</u> iew <u>H</u> e	lp					
TIDALPARAM= TIDALPARAM= TIDALPARAM= TIDALPARAM= TIDALPARAM= TIDALPARAM= TIDALPARAM= TIDALPARAM= TIDALPARAM= TIDALPARAM= TIDALPARAM=	0.00000 0.00002 0.721500 0.921941 0.989049 0.999853 1.719381 1.923766 1.991787 2.003032 2.753244 3.791964	0.00001 0.249951 0.906315 0.974188 0.998028 1.216397 1.906462 1.976926 2.002885 2.182843 3.081254 3.937897	1.000000 1.160000 1.154250 1.154240 1.149150 1.134890 1.161720 1.161720 1.161720 1.161720 1.161720 1.07338 1.03900	0.0000 DC 0.0000 Long 0.0000 Q1 0.0000 01 0.0000 P1 0.0000 K1 0.0000 M2 0.0000 M2 0.0000 S2 0.0000 K2 0.0000 M3 0.0000 M4	#tidal #tidal #tidal	param. param. param. param. param. param. param. param. param.	*
							'

Figure 6-3 Example Oceanload.dff Delta Factor File Format

Delta Factor Filename

The ASCII text file, Oceanload.dff, contains the listing of start frequency, end frequency, the Delta factor amplitude and phase (in degrees) in a format compatible with ETGTAB. This file can only be used with the ETGTAB option. Refer to Figure 6-3 for an example .dff file.

Ocean Loading Filename

The ASCII text file, Oceanload.olf, contains the ocean load parameters (Wave, Amplitude and Local Phase listing). The file has an .olf extension by default and can be used with the Berger or the ETGTAB options. Refer to Figure 6-4 for an example .olf file.

	nLoad-Micro-g So dit F <u>o</u> rmat <u>V</u> ier	olutions Incolf - N w <u>H</u> elp	otepad 📃	
Compor SM2 : SS2 : SK1 : SO1 : SN2 : SP1 : SK2 : SQ1 : SMf : SMm :	Anent An 5.1305e-009 2.6335e-009 1.2517e-008 7.5396e-009 4.4296e-010 3.8192e-009 6.4707e-010 1.4990e-009 2.0015e-010 8.3483e-011	108.659 1.364e+001 56.323 70.015 166.756 57.299 353.262 79.906 44.096	Phase	*
				► H

Figure 6-4 Example Oceanload Factor File Format

Previous version of g-software came with a separate tool for calculating OceanLoading. With the current version it is now built into the program. Two files are created by the OceanLoad tool (Delta Factor File, Ocean Loading File).

Base Name

It is recommended that the base name "Oceanload" be modified to something unique for the current instrument location. With g-software version 6 and greater, the site name is automatically appended to the Base Name of "Oceanload".

For example, the Oceanload files for site TMGO are named "Oceanload-TMGO". This helps avoid the situation in which the ocean load files for a different location are accidentally used in the calculation, resulting in the incorrect gravity value.

g-software uses the information from the **Information** tab in the **Setup** dialog to get all the data that it needs to create the Ocean Loading files.

The values it uses are:

• Name: Site name for the g-software project file.

- Latitude: Latitude of the site.
- Longitude: Longitude of the site.
- Elevation: Mean Sea Level elevation for the site.

The ocean tide files are supplied to Micro-g LaCoste by Dr. Olivier Francis, <u>olivier.francis@uni.lu</u>.

OceanLoad Dialog

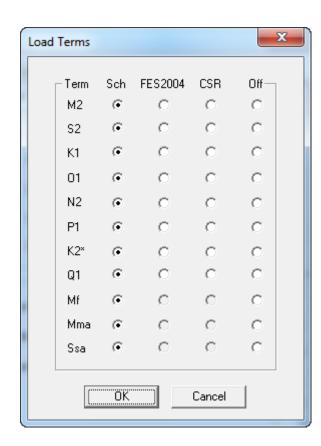
To access the **OceanLoad** dialog, click the **Run Ocean Load** button in the **ETGTAB Setup** dialog. The above listed data are displayed. The **Base Name**, **Output Directory** and **Wavefile Directory** can be configured in this dialog if needed. Refer to Figure 6-5.

OceanLoad 📃	x
N	_
Name: Micro-g LaCoste	
Latitude: 39.97893	
Longitude: -105.06817	
Elevation: 1577	
Base Name: OceanLoad-Micro-g LaCoste	
Output Directory: C:\gData\	
WaveFile Directory: C:\gData\gWavefiles\	
Setup	
OK Cancel	

Figure 6-5 OceanLoad Dialog

Advanced Users

The **Load Terms** dialog allows the selection of three common ocean tide model for each term.


- Schwiderski
- FES2004
- CSR3.0

Users unfamiliar with these wave file models should accept the default values. The FES2004 model is considered state of the art, but due to the high resolution of the model it can take a few minutes to calculate the ocean load. For quick setup purposes the default model is still that of Schwiderski.

Load Terms Dialog

To access the Load Terms dialog:

- Click on **Setup** button on the g-software main window.
- Select the **Control** tab.
- In the **Tidal Correction** section, select the tide correction method then click **Setup** button.
- In the ETGTAB Setup dialog:
 - Configure the Potential Filename and Ocean Load Files section as appropriate.
 - Click the Run Ocean Load button.
- In the OceanLoad dialog:
 - Configure Base Name, Output Directory and WaveFile Directory for your site.
 - Click Setup button to display the Load Terms dialog. Refer to Figure 6-6.

Figure 6-6 Load Terms Dialog

g-software allows users to use already existing OceanLoad files or it can dynamically create the necessary files that the user specifies on the fly.

Existing files

To use existing files, enable Ocean Load by clicking the check box in the **Setup** dialog option, and then search for the specified .olf and .dff files.

Create files

To dynamically create the files, enable Ocean Loading, and then pick a base name for the Ocean Load files. When g-software is run for the first time, a pop-up dialog prompts for confirmation to create the specified files.

Oceanloading Format

Depending on the information (modeled versus observed) contained in the tidal parameters file, an Ocean Loading file may

MICRO

or may not be entered. Users may generate this file using the OceanLoad tool as explained above, or use their own data source.

g Binary Data Files Structure

Project Files (fg5)

g-software maintains a binary project file that contains all the station, system, acquisition, control and comments information used when occupying an absolute gravity station, as well as a list of all the names of the set files.

The g-software project files have the project name as the prefix and end in an .fg5 extension. For example, the gSampleData directory contains a project called "Erie 09 jan 02a.fg5

Gravity Set Files (.gsf)

The raw observation data for each set is stored in a binary gravity set file with a "gsf" extension. All the raw data including time of drop, fringe times and auxiliary sensor(s) data is stored in this file. The gravity set files must be accompanied by the corresponding project file in order to be processed by the g-software.

Set files are named sequentially based on the project file name, the number of the set, and the "gsf" extension. For example, in the gSampleData where the project name is "Erie 09 jan 02a.fg5", the raw data file for the 5th set is named, "Erie 09 02a005.gsf". The raw data file for the 12th set is named "Erie 09 02a012.gsf".

IMPORTANT When transferring, sharing, or archiving g-software data, it is necessary to include the Project file (.fg5) and all of the gravity set (.gsf) files together.

The other files, *.txt, and project graphs, can be recreated by the software. It is not technically necessary to archive these files.

For g-software versions 6 at later, it is now possible to import and export all the project parameters and raw data in ASCII format. Refer to Section 7 <u>"Import"</u> or <u>"Export"</u> subsections for additional information.

7. MENU OPTIONS

Project Menu	7-1
New	7-2
Open	7-2
Close	7-2
Save7	7-2
Save As New Project	7-2
Save As New Template7	7-3
Import	7-3
Export	7-3
Recent File7	7-4
Exit	7-4
Edit Menu7	7-5
Reset	7-5
Set Files	7-5
Time Offset	7-5
Program GPS7	7-6
View Menu	7-6
Process Menu7	7-7
Setup7	7-8
Rate	7-9
Set Break Point7-	·10
Go7-	·10
Step7-	·10
Break7-	·10
Stop	-10
Quick Update7-	-10
View Channels	.11
Tele-g Control Panel7-	.11
Options Menu7-	-13
E-mail	-13
Graphics7-	-14
Protection7-	-15
Output Menu7-	-16
Window Menu	-18
Help Menu7-	-18

The initial g-software main window opens with four of the eight menu options. Figure 7-1 shows an example of the initial gsoftware menu options (Project, View, Window, Help). Once a project is created, all eight menu options are available (Refer to Figure 7-2) and are described in the following sections.

🐮 Micro-g	
<u>P</u> roject <u>V</u> iew <u>W</u> indow <u>H</u> elp	
ETUP	

Figure 7-1 Initial g-software Main Window With Four Menu Options

One a project is started the Eight available menu options are:

- Project
- Edit
- View
- Process
- Options
- Output
- Window
- Help

Project Menu

The Project menu drop down selection list (Figure 7-2) includes:

- New
- Open
- Close
- Save
- Save as New Project ...
- Save as New Template ...
- Import
- Export
- Recent File
- Exit

Figure 7-2 Project Menu Drop Down Selection List

New	

The **New** option creates a new project file with all parameters set to the defaults. Change these options according to the project setup location, instrument and system, data acquisition parameters and control parameters. This includes the System Factory Height, Rubidium Clock Frequency, ML-1 Laser Wavelengths (for A10 and FGL instruments) as determined by Micro-g LaCoste, and the Laser Modulation frequency as determined by Winters Electro-Optics (WEO).

Open	
	The Open option opens an existing project file (*FG5 file).
Close	
	The Close option closes the current project file (*FG5 file).
Save	
	The Save option saves the current project file (*FG5 file).
Save As New Proje	ct
	The Save As Project option allows you to save a copy of the current project file (*FG5 file) to disk, marking the file as real time (as opposed to Post Mission). The current project file (*FG5 file) is closed and the copy is opened.

Save As New Template

The **Save As New Template** option allows users to write a copy of the current project file to disk, marking the file as a *GTF. These files are usually not edited, and the user cannot acquire data with a *GTF file. *GTF files are meant to be used for creating new *FG5 files or other *GTF files.

Import

To import ASCII data:

NOTE	The imported data must be in the identical format that is
	created by the g-software Export function.

- First create a New Project.
- Then select **Import**.
 - You are prompted to enter the <project name>.fg5.txt file name.
 - There must be a corresponding <project name>.gsf.txt file with the fringe data in the g-software format. g-software automatically opens this file.

The ASCII data are then converted to the standard g-software format for processing.

Export

g-software employs its own binary format when storing both the header (.fg5) and set gravity data (.gsf). For archiving and certain analysis purposes, g-software also allows the exporting and importing of ASCII data. Real time processing is still carried out using the g-software format, but in replay mode and an ASCII version of the data can be created by selecting Export. This creates two files that are editable with any plain text editor.

<project name>.fg5.txt

The <project name.fg5.txt file contains all of the project Setup information:

- Information
- System
- Acquisition
- Control
- Comments
- Processing information.

<project name>.gsf.txt

The <project name>.gsf.txt file contains all of the raw gravity data for all of the sets:

- Raw fringe times for every drop
- Associated analog sensor data

Recent File

The **Recent File** option is grayed out (Refer to Figure 7-2) and only becomes available when the current open file is closed. The **Project** menu then displays the list of the recently accessed project files. Refer to Figure 7-3. Users can now select a previously opened project file.

Project View Window	<u>H</u> elp	
New	Ctrl+N	
😅 Open Project	Ctrl+O	
Open Template	Ctrl+T	
<u>1</u> C:\gData\\MGL.gt	f	
<u>2</u> Erie 09 jan 02a.fg5		
E <u>x</u> it		

Figure 7-3 Example Project Menu Displaying Recent File List

Exit

The **Exit** option closes the g-software program.

Edit Menu

The **Edit** menu drop down selection list (Figure 7-4) includes:

- Reset
- Set Files
- Time Offset
- Program GPS

Edit View Process Or	
<u>R</u> eset	Acquisition
Set Files	Control
Time Offset	Information
Program GPS	System
	All

Figure 7-4 Edit Menu Drop Down Selection List

reser	

Docot

The **Reset** menu option allows users to reset all or reset selected project file parameters to the values at the time of original data acquisition. Refer to Figure 7-4 to see the list of parameter options.

Set Files

This option is for future use or for internal Micro-g LaCoste testing.

Time Offset

The **Time Offset** menu option allows application of a time shift in the event that the computer time was not set to the correct time.

To calculate the offset: (Refer to Figure 7-5)

- Change the **True Start Time** to the correct time (the time that should have been)
- Click on Calculate.
- Check the time offset as listed in the grayed edit box.
 - If the time offset is correct, check the **Apply Time Offset** option to make the time offset effective during processing.

Time Offset	X
Original Start Time:	2013 Jan 12 00:26:16 🚖
True Start Time:	2013 Jan 12 00:26:16 🛛 🚔
Time Offset (D h:m:s):	0 00:00:00
Apply Time Offset	
(OK)	Cancel Calculate

Figure 7-5 Project Time Offset Dialog

Program GPS

Initializes GPS receiver for communication.

View Menu

The four default views of the data appear when an acquisition project is started. <u>Refer to Section 04 "Beginning Acquisition or Reprocessing"</u> for additional information about each of the default views. The default views are:

- State
- Set Gravity
- Drop Gravity
- Drop Residuals

Figure 7-6 show an example View menu selection list.

🐮 Micro-g - Erie	e 09 jan 02a.fg5	
Project Edit	View Process Options Output Win	ndow <u>H</u> elp
	Project	
	Full Screen F12	
🖅 🗹 🔮 Erie		
🗄 🗹 🦉 Erie	✓ <u>Set Gravity</u>	
Erie	Set Histogram	40.02885
Erie ⊕… ✔ 🦉 Erie	Set Sensors Set User Sensors	G5
🗄 🗹 👻 Erie	Set Oser Sensors Set Corrections	
	Set Horizontal Pos	
Erie	Set Vertical Pos	L
🗄 🗹 🔮 Erie	Set Fit Sensitivity	
😟 🐨 🗹 🦉 Erie .		Tra
😟 🖓 💇 Erie	✓ <u>D</u> rop Gravity	
	✓ Drop Residuals	
	Drop Histogram	Las
	Drop Sensors	
	Drop User Sensors	
	Drop Corrections	F .
	Dr <u>o</u> p Parabola	La
	Drop Seismometer	Trans
	Drop Residual PSD	
	Drop Fit Sensitivity - Top	ບ ເ
	Drop Fit Sensitivity - Bottom	y u
	Drop Residuals Spectrum	
	Advanced	-
	✓ Toolbar	
	✓ Status Bar	-20

Figure 7-6 View Menu List

Process Menu

The **Process** menu drop down selection list (Refer to Figure 7-7) includes:

- Setup
- Rate
- Set Break Point

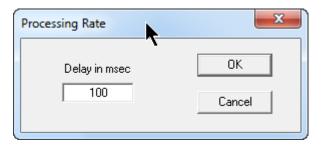
- Go
- Step
- Break
- Stop
- Quick Update
- View Channels

🛠 Micro-g - Erie 09 jan 02a.fg5			
<u>P</u> roject <u>E</u> dit <u>V</u> iew	Process Options	O <u>u</u> tput <u>W</u> indo	w <u>H</u> elp
TEMPLATE	SETUP S <u>e</u> tup	F3)
	<u>R</u> ate		
🕀 🗹 🔮 Erie 09 jan (Set Break Poin	t	
🖶 🗹 🦉 Erie 09 jan (System Beep 		
🗄 🖓 💇 Erie 09 jan (40.02885
🗄 🗹 🔮 Erie 09 jan (🕨 <u>G</u> о	F5	40.02000
🗄 🖓 🐨 Erie 09 jan (▶ Step	F11	FG5 206
🗎 🕀 🖉 🦉 Erie 09 jan (Break	Ctrl+F5	
🗄 🖓 🔮 Erie 09 jan (Shift+F5	<u> </u>
🗄 🖓 🔮 Erie 09 jan (Stop	Shirt+FS	
i I I I I I I I I I I I I I I I I I I I	Quick Update		Loa
I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	🞽 View Channels	s F7	Transt
	Tele-g Contro	l Panel	Ion (

Figure 7-7 Process Menu Selection List

Setup

Use the **Setup** dialog to set the software parameters for data acquisition and processing. Figure 7-8 shows and example of the **Setup** dialog.


Refer to <u>Section 03 "Real-time Data Acquitisition"</u> for more information on setting the parameters for each of the tab sections.

Setun	Microg LaCoste
Setup Information System Acquisition Control Comments Site Name: Micro-g Solutions Inc. Setup/Lookup Code: MGSNU Setup/Lookup Latitude (dd, +N): 40.02885 Setup/Lookup Latitude (dd, +E): -105.04603 Dolar X (arc sec): 0.3169 Convert 100 Set to Actual Height Sync w/ KRONOS Bevation (m): 1528 Sync w/ KRONOS Access Point File Gradient (µGal/cm): -3.02 Access Point File Access Point File	
OK Cancel Apply	

Figure 7-8 Setup Dialog

Rate

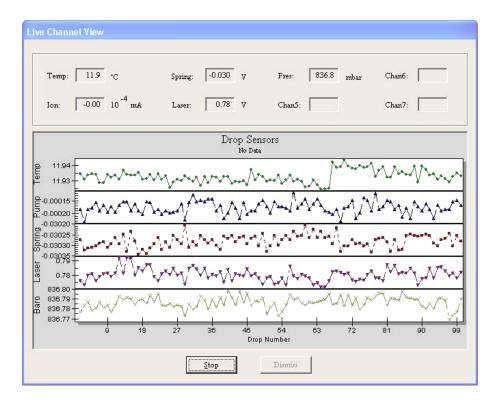
The **Rate** option sets the rate at which drops are processed in Post-Mission mode only. Refer to Figure 7-9. On some machines with slower graphics, it may be necessary to set the rate to 50ms or greater in order to avoid synchronization problems occurring between mathematical processing and graphical display.

Set Break Point

The **Set Break Point** option allows the manual setting of a break point in Post-Mission mode only. Refer to Figure 7-10. In general, it is much easier to set a break point from the tree menu. See <u>Section 5 "Project Navigation Panel"</u> for instructions on how to set a break point from the tree menu.

Set Processing Break Point			
Activate Processing Break Point			
Break at Drop: 1			
Break at Set: 1			
OK Cancel			

Figure 7-10 Set Processing Break Point


Go	
	The Go option starts the processing in both Post-Mission and Real-Time.
Step	
	The Step option allows users to view process drops step by step in Post-Mission mode only.
Break	
	The Break option allows user to pause processing and should only be used in Post-Mission mode.
Stop	
	The Stop option stops all processing in both Post-Mission processing and Real-time data acquisition.
Quick Update	
	The Quick Update option is enabled after all sets have been processed. Quick Update is used to discard Sets from the list used in the final determination of the absolute value of gravity.

After the sets are deselected on the tree, **Quick Update** updates the project number according to the last setup of the processing parameters. If any processing parameters change **Quick Update** automatically reprocesses all selected sets.

View Channels

The **View Channels** option allows users to view data channels before and after processing. This is used to determine what data is coming in from channels without having to process any of the data. Figure 7-11.shows an example of the Live Channel view dialog.

Tele-g Control Panel

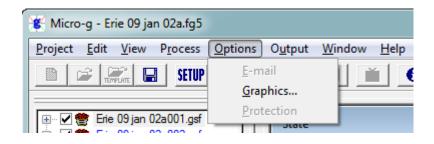
The Tele-g Control Panel option is only available if a serial A2D communication card is used. It allows users to check and adjust various components of the system. Users can:

- Zero and Servo the Super Spring
- Zero the Tiltmeter
- Monitor Fringes
- Monitor sphere position

To initialize the Tele-g Control Panel, click on **Connect**. This gathers information from the system and allows the user to make adjustments. The information gathered enables or disables certain features that are available. The Tele-g Control Panel defaults to Super Spring/Tiltmeter adjustments.

To view Fringes or Sphere, click **Initialize** and the graph automatically changes and begins data acquisition.

Tele-g Control Panel
Controls Super Spring Servo Zero Zero Nonitor Fringes Initialize Initialize
Sensors
> 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Connect Close


Figure 7-12 Tele-g Control Panel

Options Menu

The **Options** menu drop down selection list (Refer to Figure 7-13) includes:

- E-mail
- Graphics
- Protection

Figure 7-13 Options Menu List

E-mail

For system controllers with an internet connection, g-software can be set up to send periodic e-mails with real time processing results. By default the e-mail notification is off. Figure 7-14 shows the **E-mail setup** Notification Dialog Box.

A valid mail server (**Server**), a valid identity for that server (**From**) and a valid recipient (**To**) must be entered.

NOTE Any e-mail errors encountered are suppressed to avoid interference with data acquisition.

When **E-mail Sent is** enabled, the default information is sent. To exclude information uncheck the check box in the **Included Data In Body** section.

- Project Gravity (Current total project gravity value)
- Set Scatter (Current set scatter)
- Set Gravity (Gravity value of the last completed set)
- Drop Scatter (Drop scatter of the last completed set)
- Uncertainty (Total project uncertainty)
- Number of Sets (The number of the last completed set)
- **Project File** (A copy of the latest version of the project.txt file is attached.)

• Set File (A copy of the latest version of the set.txt file is attached.)

The E-mail Sent drop down notification selection list includes:

- Never
- After every completed set.
- After every other completed set.
- Only at the end of a completed project.

E-mail Setup			X
E-mail —	7		
Server:	mail.server.com		
From:	FG5@gravitymeter.com	n	
To:			
CC:			
BCC:			
Subject:	Gravity Data		
Body:			
	<u> </u>		
	Data In Body		
	Project Gravity	Set Gravity	Uncertainty
	 Set Scatter 	Drop Scatter	Vumber of Sets
Attached	Files		E-mail Sent
	Project File	🔽 Set File	Never
	🔽 Suppress Error Mes	sages 🚺	K Cancel

Figure 7-14 E-mail Setup Notification Dialog

Graphics

The **Graphics** option allows users to manually set all scales in the graphs. Graphical scales are saved to the project file. Figure 7-15 show an example Graphics Setup dialog.

The "Stored Graphs" mode can be enabled or disabled. Stored Graphs, when enabled, allows users to click on a particular drop or set in the tree view, and view the last data that was stored. Click the **Enable Stored Graphs** check box in the **Graphics Setup** dialog. Refer to Figure 7-15.

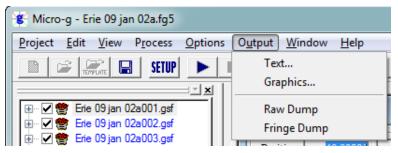
NOTE To work properly the Stored Graphs mode must be enabled before processing the data.

Set (Max, Min)—				C Drop (Max, Min)			
- · ·			Enable	Gravity:	50	-50	Enab V
Gravity:	50	-50		Residuals:	10	-10	
Corrections			Enable	Corrections			Enab
Tide:	200	-200		Tide:	200	-200	
Load:	5	-5		Load:	5	-5	
Polar:	10	-10		Polar:	10	-10	
Barometric:	5	-5		Barometric:	20	-20	
RefXo:	0.5	-0.5		RefXo:	200	-200	
Transfer:	500	-500		Transfer:	200	-200	
Tilt:	5	-5		Tilt	5	-5	
Diffraction:	5	-5		Diffraction:	5	-5	
Self Attract:	5	-5		Self Attract:	5	-5	
Sensors			Enable	Sensors			Enat
Temp:	100	-100		Temp:	50	-50	
Spring:	1.25	-1.25		Spring:	1.25	-1.25	
Pump:	2	-2		Pump:	2	-2	
Laser:	5	-5		Laser:	5	-5	
Pressure:	1200	600		Pressure:	1200	600	
User5:	5	-5		User5:	5	-5	
User6:	5	-5		User6:	5	-5	
User7:	5	-5		User7:	5	-5	
User8:	5	-5		User8:	5	-5	
User9:	5	-5		User9:	5	-5	
User10:	5	-5		User10:	5	-5	
Fit Sensitivity -			Enable	- Fit Sensitivity-			Enat
Тор:	5	-5		Top:	15	-15	
Bottom:	5	-5		Bottom:	15	-15	

Figure 7-15 Graphics Setup Dialog

Protection

This option is for future use or for internal Micro-g LaCoste testing.



Output Menu

There are four options available under the **Output** menu. Refer to Figure 7-16.

- Text
- Graphics
- Raw Dump
- Fringe Dump

By default, g-software outputs a text file for the Project Summary and the Set by Set Summary.

Figure 7-16 Output Menu List

Additional information can be added to the file such as:

- Drops
- Graphics (.jpg image of the displayed view)
- Raw Data

These options must be selected in the **Output Selection** dialog before processing the data. Refer to Figure 7-17 and Figure 7-18.

NOTE The view must be opened for g-software to save the graphical images.

Output Selection			×	
		`		
Project	Report	MGL.project.txt		
🔽 Set Det	ails	MGL.set.txt		
🗖 Drop De	etails	MGL.drop.txt		
🗖 Raw Da	ata	MGL.raw.txt		
🗖 Residua	al Data	MGL.res.txt		
NOTE: Select Output Options Prior to Processing Data				
OK Cancel				

Figure 7-17 Text Output Selection Setup Dialog

Output Selection	X			
 Set Gravity Set Histogram Set Fit Sensitivity 	 Set Corrections Set Sensors 			
 Drop Gravity Drop Sensors Drop Parabola Drop Seismometer Drop Fit Sensitivity - Top Drop Residuals Spectrum 	 Drop Residuals Drop Corrections Drop Histogram Drop Res. PSD Drop Fit Sensitivity - Bottom 			
NOTE: Select Output Options Prior to Processing Data				

Figure 7-18 Graphic Output Selection Dialog

Microg LaCoste

Window Menu

The **Window** menu provides display selection choice of **Cascade** or **Tile** format. The currently selected data views are also listed.

Help Menu

Information about the g-software version and a pdf of the g-software Absolute Gravity Data Acquisition And Processing Software User's Manual can be accessed from the **Help** menu.

8. ADDITIONAL UTILITIES

Convert Utility	8-1
Convert Utility Input File	8-1
Sensor File	
Output Project	8-2
ProjectMerge Utility	
Output Directory	
Final Project Name	
Merge Files	
Add File	8-4
Remove File	8-4
Merge	8-4
gProjectCopy Utility	
Input File	
New Project	
Сору	8-5

The g-software additional utilities are located in the bin folder. There are three additional utilities:

- Convert.exe
- ProjectMerge.exe
- gProjectCopy.exe

Convert Utility

The **Convert** utility is used for converting legacy files obtained with Olivia DOS software into the new g-software format. Figure 8-1 shows an example of the **Convert** dialog.

🔀 Convert	×
File Information	
Input File:	
- Sensor Data	
🔲 Include Sensor File	Format Setup
Sensor File:	
- Output Project	
Filename:	
<u>C</u> onvert Now	Dismiss

Figure 8-1 Convert Utility Dialog

Input File

In the **File Information** section, **Input File** is the path location and name of the DDT or compatible binary absolute gravity data file. The g-software **Convert** utility supports most DDT files but may not support some versions. If you have trouble converting files, please contact Micro-g LaCoste.

Sensor File

In the **Sensor Data** section, check the **Include Sensor File** box if sensor data is to be included. The **Sensor File** is the base name to be used with the g-software project file.

Click the **Format Setup** button to configure the sensor file format. Refer to Figure 8-2.

Sensor Setup
Sensor File Format
Number of channels: 5
0: Temperature 💌
1: Spring 🗨
2: Ion Pump 💌
3: Laser 🗸
4 : Barometer 💌
5: 🚽
6:
7:
🔲 Set & Drop Number in File
Cancel

Figure 8-2 Sensor Setup Dialog.

Output Project

The **Filename** in the **Output Project** section is the location for all g-software converted files (FG5 and *.gsf).

ProjectMerge Utility

The **ProjectMerge** utility is a program that lets users combine multiple projects into one single project file. This is useful in the case when data acquisition is interrupted and a single project is desired. Figure 8-3 shows the ProjectMerge interface.

NOTE The ProjectMerge utility assumes that all acquisition parameters are identical (i.e. A run was stopped after a few sets, and a new project was created and begun immediately).

ProjectMerge is **not** intended to combine projects with different parameters. Doing so is at your own risk.

🖡 Ur	ntitled - ProjectMerge	x
<u>F</u> ile	<u>V</u> iew <u>H</u> elp	
	Output Directory: Final Project Name: Untitled Merge Merge Files	
	Add File Remove File	
Ready	<u>M</u> erge	

Figure 8-3 ProjectMerge Utility Dialog

Output Directory

The **Output Directory** is the location of the merged project.

Final Project Name	
	The Final Project name is the name which the merged project is saved as.
Merge Files	
	The Merge Files are the list of files to be merged together to create the merged project.
Add File	
	The Add File button is for adding more files to the Merge Files list.
Remove File	
	The Remove File button removes files from the Merge Files list. It removes the selected file.
NOTE	If no files are selected the first file on the list is removed.
Merge	
	Click the Merge button to start merging the files.

gProjectCopy Utility

The **gProjectCopy** utility is a program that lets users easily change the name of their projects. This is useful if the name of a project has an incorrect name or needs to be changed. This utility renames all of the files associated with the .fg5 file.

🖫 Untitled - gProjectCopy	
<u>F</u> ile <u>H</u> elp	
Input File: New Project:	Сору

Figure 8-4 gProjectCopy Dialog

Input File

The Input File is the file to be copied.

New Project

The **New Project** is the name of the output project name.

Сору

The **Copy** button starts the copying process.

9. LICENSE, SUPPORT AND MAINTENANCE

License	. 9-1
Support	. 9-1
Maintenance	. 9-1

License

Licensed users of g-software are entitled to three install platforms with the Main License. Additional installations, including support, are purchased one seat at a time directly from Micro-g LaCoste. If your institution or company requires g-software to run on more than three platforms, please contact Micro-g LaCoste directly or visit our website, <u>www.microglacoste.com</u>, for more information.

Support

Questions concerning the operation of the g-software and any problems using g-software should be directed to:

aaron@microglacoste.com

You can expect to receive an email or phone call within 48 hours of your inquiry.

Maintenance

Periodically Micro-g LaCoste posts an upgrade or patch for the g-software on the website. Patches and Upgrades are posted without notification so please check back periodically to get the latest patch if applicable. or directed by Micro-g LaCoste.

